Serum Biomarkers of Exposure to Perfluoroalkyl Substances in Relation to Serum Testosterone and Measures of Thyroid Function among Adults and Adolescents from NHANES 2011-2012

Perfluoroalkyl substances (PFASs) are a group of environmentally-persistent chemicals that have been widely used in many industrial applications. There is human and animal evidence that PFASs may alter levels of reproductive and thyroid-related hormones. However, human studies on the potential age-r...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of environmental research and public health Vol. 12; no. 6; pp. 6098 - 6114
Main Authors Lewis, Ryan C, Johns, Lauren E, Meeker, John D
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 29.05.2015
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Perfluoroalkyl substances (PFASs) are a group of environmentally-persistent chemicals that have been widely used in many industrial applications. There is human and animal evidence that PFASs may alter levels of reproductive and thyroid-related hormones. However, human studies on the potential age-related effects of PFASs on these outcomes among males and females are limited. We explored the relationship between serum PFASs and serum total testosterone (T), thyroid stimulating hormone (TSH), and free and total triiodothyronine (FT3, TT3) and thyroxine (FT4, TT4) among males and females 12 to 80 years of age from the 2011-2012 cycle of the National Health and Nutrition Examination Survey. Associations were assessed using multiple linear regression models that were stratified on sex and age categories. Effect estimates from the majority of the adjusted models were not statistically significant. However, exposure to PFASs may be associated with increases in FT3, TT3, and FT4 among adult females, but during adolescence, PFASs may be related to increases in TSH among males and decreases in TSH among females. No significant relationships were observed between PFASs and T in any of the models. These findings suggest that exposure to PFASs may disrupt thyroid hormone homeostasis.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1660-4601
1661-7827
1660-4601
DOI:10.3390/ijerph120606098