Polymerization within Nanoporous Anodized Alumina Oxide Templates (AAO): A Critical Survey

In the last few years, the polymerization of monomers within the nanocavities of porous materials has been thoroughly studied and developed, allowing for the synthesis of polymers with tailored morphologies, chemical architectures and functionalities. This is thus a subject of paramount scientific a...

Full description

Saved in:
Bibliographic Details
Published inPolymers Vol. 15; no. 3; p. 525
Main Authors Mijangos, Carmen, Martin, Jaime
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 19.01.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In the last few years, the polymerization of monomers within the nanocavities of porous materials has been thoroughly studied and developed, allowing for the synthesis of polymers with tailored morphologies, chemical architectures and functionalities. This is thus a subject of paramount scientific and technological relevance, which, however, has not previously been analyzed from a general perspective. The present overview reports the state of the art on polymerization reactions in spatial confinement within porous materials, focusing on the use of anodized aluminum oxide (AAO) templates. It includes the description of the AAO templates used as nanoreactors. The polymerization reactions are categorized based on the polymerization mechanism. Amongst others, this includes electrochemical polymerization, free radical polymerization, step polymerization and atom transfer radical polymerization (ATRP). For each polymerization mechanism, a further subdivision is made based on the nature of the monomer used. Other aspects of “in situ” polymerization reactions in restricted AAO geometries include: conversion monitoring, kinetic studies, modeling and polymer characterization. In addition to the description of the polymerization process itself, the use of polymer materials derived from polymerization in AAO templates in nanotechnology applications, is also highlighted. Finally, the review is concluded with a general discussion outlining the challenges that remain in the field.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ISSN:2073-4360
2073-4360
DOI:10.3390/polym15030525