Electronic and photocatalytic properties of two-dimensional boron phosphide/SiC van der Waals heterostructure with direct type-II band alignment: a first principles study

Designing van der Waals (vdW) heterostructures of two-dimensional materials is an efficient way to realize amazing properties as well as opening opportunities for applications in solar energy conversion and nanoelectronic and optoelectronic devices. In this work, we investigate the electronic, optic...

Full description

Saved in:
Bibliographic Details
Published inRSC advances Vol. 1; no. 53; pp. 3227 - 3233
Main Authors Do, Thi-Nga, Idrees, M, Amin, Bin, Hieu, Nguyen N, Phuc, Huynh V, Hieu, Nguyen V, Hoa, Le T, Nguyen, Chuong V
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 28.08.2020
The Royal Society of Chemistry
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Designing van der Waals (vdW) heterostructures of two-dimensional materials is an efficient way to realize amazing properties as well as opening opportunities for applications in solar energy conversion and nanoelectronic and optoelectronic devices. In this work, we investigate the electronic, optical, and photocatalytic properties of a boron phosphide-SiC (BP-SiC) vdW heterostructure using first-principles calculations. The relaxed configuration is obtained from the binding energies, inter-layer distance, and thermal stability. We show that the BP-SiC vdW heterostructure has a direct band gap with type-II band alignment, which separates the free electrons and holes at the interface. Furthermore, the calculated absorption spectra demonstrate that the optical properties of the BP-SiC heterostructure are enhanced compared with those of the constituent monolayers. The intensity of optical absorption can reach up to about 10 5 cm −1 . The band edges of the BP-SiC heterostructure are located at energetically favourable positions, indicating that the BP-SiC heterostructure is able to split water under working conditions of pH = 0-3. Our theoretical results provide not only a fascinating insight into the essential properties of the BP-SiC vdW heterostructure, but also helpful information for the experimental design of new vdW heterostructures. We investigate the structural, electronic, optical and photocatalytic properties of boron phosphide and SiC monolayers and their corresponding van der Waals heterostructure by density functional theory.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2046-2069
2046-2069
DOI:10.1039/d0ra05579d