The Gaussian free space optical MIMO channel with Q-ary pulse position modulation

The main drawback in communicating via the free space optical (FSO) channel is the detrimental effect the atmosphere has on a propagating laser beam. Atmospheric turbulence causes random fluctuations in the irradiance of the received optical laser beam, commonly referred to as scintillation. This pa...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on wireless communications Vol. 7; no. 5; pp. 1744 - 1753
Main Authors Letzepis, N., Holland, I., Cowley, W.
Format Journal Article
LanguageEnglish
Published Piscataway, NJ IEEE 01.05.2008
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The main drawback in communicating via the free space optical (FSO) channel is the detrimental effect the atmosphere has on a propagating laser beam. Atmospheric turbulence causes random fluctuations in the irradiance of the received optical laser beam, commonly referred to as scintillation. This paper investigates the use of multiple lasers and multiple apertures to mitigate the effects of scintillation. In particular, the FSO multiple-input multiple-output (MIMO) channel with Q-ary pulse position modulation (QPPM) and transmit repetition under the assumption of non-ideal photodetection is analyzed in terms of its uncoded bit error rate (BER) and ergodic channel capacity. This analysis is based, in part, on the use of irradiance fluctuation samples that were obtained from a laser range experiment that was conducted in the presence of moderate turbulence conditions. Expressions are derived for the log-likelihood ratio (LLR) of a received bit, uncoded BER and ergodic capacity. Using these results it is shown that large gains are possible with the use of MIMO combined with strong coding techniques.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1536-1276
1558-2248
DOI:10.1109/TWC.2008.061002