Machine Learning–Driven Language Assessment

We describe a method for rapidly creating language proficiency assessments, and provide experimental evidence that such tests can be valid, reliable, and secure. Our approach is the first to use machine learning and natural language processing to induce proficiency scales based on a given standard,...

Full description

Saved in:
Bibliographic Details
Published inTransactions of the Association for Computational Linguistics Vol. 8; pp. 247 - 263
Main Authors Settles, Burr, T. LaFlair, Geoffrey, Hagiwara, Masato
Format Journal Article
LanguageEnglish
Published One Rogers Street, Cambridge, MA 02142-1209, USA MIT Press 01.01.2020
MIT Press Journals, The
The MIT Press
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We describe a method for rapidly creating language proficiency assessments, and provide experimental evidence that such tests can be valid, reliable, and secure. Our approach is the first to use machine learning and natural language processing to induce proficiency scales based on a given standard, and then use linguistic models to estimate item difficulty directly for computer-adaptive testing. This alleviates the need for expensive pilot testing with human subjects. We used these methods to develop an online proficiency exam called the Duolingo English Test, and demonstrate that its scores align significantly with other high-stakes English assessments. Furthermore, our approach produces test scores that are highly reliable, while generating item banks large enough to satisfy security requirements.
Bibliography:Volume, 2020
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2307-387X
2307-387X
DOI:10.1162/tacl_a_00310