Transcriptional control by galactose of a yeast gene encoding a protein homologous to mammalian aldo/keto reductases

Expression of the S. cerevisiae gene, GCY, encoding a 35-kDa protein with striking homology to mammalian aldo/keto reductases, is under the control of galactose: the intracellular concentration of the respective mRNA (about 1300 nt in length) varies strongly with the carbon source. It is particularl...

Full description

Saved in:
Bibliographic Details
Published inGene Vol. 90; no. 1; pp. 105 - 114
Main Authors Magdolen, Viktor, Oechsner, Ulrich, Trommler, Paul, Bandlow, Wolfhard
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 31.05.1990
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Expression of the S. cerevisiae gene, GCY, encoding a 35-kDa protein with striking homology to mammalian aldo/keto reductases, is under the control of galactose: the intracellular concentration of the respective mRNA (about 1300 nt in length) varies strongly with the carbon source. It is particularly high when galactose is the sole energy source but is low as soon as glucose is present. Lactate, glycerol and raffinose lead to intermediate expression. Both Northern blot analyses and lacZ fusion data indicate a 20- to 50-fold increase in the steady state concentrations of mRNA and βGal activity, respectively, when grown on galactose as compared to glucose. The gene is depressed aftercultivation on glycerol in the wt and in a gal80 mutant background but remains uninducible by galactose in strains carrying either a gal2 or a gal4 mutation, affecting galactose permease and the GAL gene trans-activator, respectively. Analysis of GCY expression in gal regulatory mutants reveals epistasis interactions of the gal4 and the gal80 mutations as expected if GCY is regulated by the Gal control system. Repression of GCY transcription by glucose is observed in all three above gal mutant strains. The results suggest that the gene is both positively controlled by galactose and negatively by glucose. Analysis of a set of upstream deletions identifies a single UAS matching the consensus for GAL gene upstream regulation sites. By contrast to other genes regulated by galactose, disruption mutants of GCY exhibit no obvious phenotype, and in particular do not lose the ability to grow on and adapt to galactose. Enzyme tests with AKR-specific substrates suggest that GCY encodes a carbonyl reductase.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0378-1119
1879-0038
DOI:10.1016/0378-1119(90)90445-W