Novel Programming Features Help Alleviate Subthalamic Nucleus Stimulation‐Induced Side Effects

ABSTRACT Background Subthalamic nucleus deep brain stimulation (STN‐DBS) is a widely used treatment for Parkinsonʼs disease (PD) patients with motor complications, but can result in adverse effects (AEs) in a significant proportion of treated patients. The use of novel programming features including...

Full description

Saved in:
Bibliographic Details
Published inMovement disorders Vol. 35; no. 12; pp. 2261 - 2269
Main Authors Dayal, Viswas, De Roquemaurel, Alexis, Grover, Timothy, Ferreira, Francisca, Salazar, Maricel, Milabo, Catherine, Candelario‐McKeown, Joseph, Zrinzo, Ludvic, Akram, Harith, Limousin, Patricia, Foltynie, Thomas
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.12.2020
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:ABSTRACT Background Subthalamic nucleus deep brain stimulation (STN‐DBS) is a widely used treatment for Parkinsonʼs disease (PD) patients with motor complications, but can result in adverse effects (AEs) in a significant proportion of treated patients. The use of novel programming features including short pulse width (PW) and directional steering in alleviating stimulation‐induced AEs has not been explored. Objective To determine if programming with short PW, directional steering, or the combination of these novel techniques can improve stimulation‐induced dysarthria, dyskinesia, and pyramidal AEs. Methods Thirty‐two consecutive PD patients who experienced reversible AEs of STN‐DBS had optimization of their settings using either short PW, directional steering, or the combination, while ensuring equivalent control of motor symptoms. Pairwise comparisons of pre‐ and post‐optimization adverse effect ratings were made. Patients were left on the alternative setting with the greatest benefit and followed up at 6 months. Modeling of volume of tissue activated (VTA) and charge per pulse (Qp) calculations were used to explore potential underlying mechanisms of any differences found. Results There were significant improvements in stimulation‐induced dysarthria, dyskinesia, and pyramidal side effects after optimization. At 6 months, mean AE ratings remained significantly improved compared to pre‐optimization ratings. Different patterns of shift in VTA for each AE, and Qp could be used to explain improvements using novel techniques. Conclusions Stimulation‐induced dysarthria, dyskinesia, and pyramidal AEs induced by STN‐DBS can be improved by using novel programming techniques. These represent additional tools to conventional methods that can be used to address these AEs. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0885-3185
1531-8257
DOI:10.1002/mds.28252