Factorization and transverse phase-space parton distributions

A bstract We first revisit impact-parameter dependent collisions of ultra-relativistic particles in quantum field theory. Two conditions sufficient for defining an impact-parameter dependent cross section are given, which could be violated in proton-proton collisions. By imposing these conditions, a...

Full description

Saved in:
Bibliographic Details
Published inThe journal of high energy physics Vol. 2021; no. 7; pp. 1 - 29
Main Author Wu, Bin
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.07.2021
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A bstract We first revisit impact-parameter dependent collisions of ultra-relativistic particles in quantum field theory. Two conditions sufficient for defining an impact-parameter dependent cross section are given, which could be violated in proton-proton collisions. By imposing these conditions, a general formula for the impact-parameter dependent cross section is derived. Then, using soft-collinear effective theory, we derive a factorization formula for the impact-parameter dependent cross section for inclusive hard processes with only colorless final-state products in hadron and nuclear collisions. It entails defining thickness beam functions, which are Fourier transforms of transverse phase-space parton distribution functions. By modelling non-perturbative modes in thickness beam functions of large nuclei in heavy-ion collisions, the factorization formula confirms the cross section in the Glauber model for hard processes. Besides, the factorization formula is verified up to one loop in perturbative QCD for the inclusive Drell-Yan process in quark-antiquark collisions at a finite impact parameter.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP07(2021)002