Real-time prediction of mechanical behaviors of underwater shield tunnel structure using machine learning method based on structural health monitoring data
Predicting the mechanical behaviors of structure and perceiving the anomalies in advance are essential to ensuring the safe operation of infrastructures in the long run. In addition to the incomplete consideration of influencing factors, the prediction time scale of existing studies is rough. Theref...
Saved in:
Published in | Journal of Rock Mechanics and Geotechnical Engineering Vol. 15; no. 4; pp. 886 - 895 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.04.2023
State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences,Wuhan,430071,China University of Chinese Academy of Sciences,Beijing,100049,China%State Key Laboratory of Software Development Environment,Beihang University,Beijing,100191,China Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Predicting the mechanical behaviors of structure and perceiving the anomalies in advance are essential to ensuring the safe operation of infrastructures in the long run. In addition to the incomplete consideration of influencing factors, the prediction time scale of existing studies is rough. Therefore, this study focuses on the development of a real-time prediction model by coupling the spatio-temporal correlation with external load through autoencoder network (ATENet) based on structural health monitoring (SHM) data. An autoencoder mechanism is performed to acquire the high-level representation of raw monitoring data at different spatial positions, and the recurrent neural network is applied to understanding the temporal correlation from the time series. Then, the obtained temporal-spatial information is coupled with dynamic loads through a fully connected layer to predict structural performance in next 12 h. As a case study, the proposed model is formulated on the SHM data collected from a representative underwater shield tunnel. The robustness study is carried out to verify the reliability and the prediction capability of the proposed model. Finally, the ATENet model is compared with some typical models, and the results indicate that it has the best performance. ATENet model is of great value to predict the real-time evolution trend of tunnel structure.
•A more credible prediction model is presented to solve practical engineering problem.•Timely prediction for the subsequent state and precise perception for anomaly in advance.•Interdisciplinary research of machine learning in the analysis of structural mechanical behaviors. |
---|---|
ISSN: | 1674-7755 |
DOI: | 10.1016/j.jrmge.2022.06.015 |