Analysis of electroencephalograms in Alzheimer's disease patients with multiscale entropy

The aim of this study was to analyse the electroencephalogram (EEG) background activity of Alzheimer's disease (AD) patients using multiscale entropy (MSE). MSE is a recently developed method that quantifies the regularity of a signal on different time scales. These time scales are inspected by...

Full description

Saved in:
Bibliographic Details
Published inPhysiological measurement Vol. 27; no. 11; pp. 1091 - 1106
Main Authors Escudero, J, Abásolo, D, Hornero, R, Espino, P, López, M
Format Journal Article
LanguageEnglish
Published England IOP Publishing 01.11.2006
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The aim of this study was to analyse the electroencephalogram (EEG) background activity of Alzheimer's disease (AD) patients using multiscale entropy (MSE). MSE is a recently developed method that quantifies the regularity of a signal on different time scales. These time scales are inspected by means of several coarse-grained sequences formed from the analysed signals. We recorded the EEGs from 19 scalp electrodes in 11 AD patients and 11 age-matched controls and estimated the MSE profile for each epoch of the EEG recordings. The shape of the MSE profiles reveals the EEG complexity, and it suggests that the EEG contains information in deeper scales than the smallest one. Moreover, the results showed that the EEG background activity is less complex in AD patients than control subjects. We found significant differences between both subject groups at electrodes F3, F7, Fp1, Fp2, T5, T6, P3, P4, O1 and O2 (p-value < 0.01, Student's t-test). These findings indicate that the EEG complexity analysis performed on deeper time scales by MSE may be a useful tool in order to increase our knowledge of AD.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0967-3334
1361-6579
DOI:10.1088/0967-3334/27/11/004