Vagally induced release of gastrin, somatostatin and bombesin-like immunoreactivity from perfused rat stomach. Effect of stimulation frequency and cholinergic mechanisms

The isolated stomach of rats was vascularly perfused to measure the secretion of gastrin, somatostatin (SLI) and bombesin-like immunoreactivity (BLI). The gastric lumen was perfused with saline pH 7 or pH 2, and electrical vagal stimulation was performed with 1 ms, 10 V and 2, 5 or 10 Hz, respective...

Full description

Saved in:
Bibliographic Details
Published inRegulatory peptides Vol. 30; no. 3; pp. 179 - 192
Main Authors Madaus, S., Bender, H., Schusdziarra, V., Kehe, K., Munzert, G., Weber, G., Classen, M.
Format Journal Article
LanguageEnglish
Published Shannon Elsevier B.V 08.10.1990
Amsterdam Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The isolated stomach of rats was vascularly perfused to measure the secretion of gastrin, somatostatin (SLI) and bombesin-like immunoreactivity (BLI). The gastric lumen was perfused with saline pH 7 or pH 2, and electrical vagal stimulation was performed with 1 ms, 10 V and 2, 5 or 10 Hz, respectively. Atropine was added in concentrations of 10 −9 or 10 −7 M to evaluate the role of cholinergic mechanisms. In control experiments, vagal stimulation during luminal pH 2 elicited a significant increase of BLI secretion only at 10 Hz but not at 2 and 5 Hz. Somatostatin release was inhibited independent of the stimulation frequency employed. Gastrin secretion at 2 Hz was twice the secretion rates observed at 5 and 10 Hz, respectively. At luminal pH 7 BLI rose significantly at 5 and 10 Hz. SLI secrtion was decreased by all frequencies. Gastrin secretion at 2 and 5 Hz was twice as high as during stimulation with 10 Hz. Atropine at doses of 10 −9, 10 −8, 10 −7 and 10 −6 M had no effect on basal secretion of BLI, SLI and gastrin. At luminal pH 2, atropine increased dose-dependently the BLI response at 2 and 5 but not at 10 Hz. The decrease of SLI during 2 and 5 Hz but not 10 Hz was abolished by atropine 10 −9 M. SLI was reversed to stimulation during atropine 10 −7 M at all frequencies. The rise of gastrin at 2 Hz was reduced by 50%. At luminal pH 7, atropine had comparable effects with a few differences: the BLI response at 10 Hz was augmented and the gastrin response to 2 and 5 Hz was reduced. In conclusion the present data demonstrate a frequency and pH-dependent stimulation of BLI and gastrin release. The stimulation of BLI is predominantly due to atropine-insensitive mechanisms while muscarinic cholinergic mechanisms exert an inhibitory effect on BLI release during lower stimulation frequencies (2 and 5 Hz) independent of the intragastric pH and also during higher frequencies at neutral pH. Both, atropine sensitive and insensitive mechanisms are activated frequency dependent. The atropine-sensitive cholinergic mechanisms but not the noncholinergic mechanisms involved in regulation of G-cell function are pH and frequency dependent. Somatostatin is regulated largely independent of stimulation frequency and pH by at least two pathways involving cholinergic mechanisms of different sensitivity to atropine. These data suggest a highly differentiated regulation of BLI, gastrin and SLI secretion and the interaction between these systems awaits further elucidation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0167-0115
1873-1686
DOI:10.1016/0167-0115(90)90093-C