A Novel Zak Knockout Mouse with a Defective Ribotoxic Stress Response

Ricin activates the proinflammatory ribotoxic stress response through the mitogen activated protein 3 kinase (MAP3K) ZAK, resulting in activation of mitogen activated protein kinases (MAPKs) p38 and JNK1/2. We had a novel zak-/- mouse generated to study the role of ZAK signaling in vivo during ricin...

Full description

Saved in:
Bibliographic Details
Published inToxins Vol. 8; no. 9; p. 259
Main Authors Jandhyala, Dakshina M, Wong, John, Mantis, Nicholas J, Magun, Bruce E, Leong, John M, Thorpe, Cheleste M
Format Journal Article
LanguageEnglish
Published Switzerland MDPI 02.09.2016
MDPI AG
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Ricin activates the proinflammatory ribotoxic stress response through the mitogen activated protein 3 kinase (MAP3K) ZAK, resulting in activation of mitogen activated protein kinases (MAPKs) p38 and JNK1/2. We had a novel zak-/- mouse generated to study the role of ZAK signaling in vivo during ricin intoxication. To characterize this murine strain, we intoxicated zak-/- and zak+/+ bone marrow-derived murine macrophages with ricin, measured p38 and JNK1/2 activation by Western blot, and measured zak, c-jun, and cxcl-1 expression by qRT-PCR. To determine whether zak-/- mice differed from wild-type mice in their in vivo response to ricin, we performed oral ricin intoxication experiments with zak+/+ and zak-/- mice, using blinded histopathology scoring of duodenal tissue sections to determine differences in tissue damage. Unlike macrophages derived from zak+/+ mice, those derived from the novel zak-/- strain fail to activate p38 and JNK1/2 and have decreased c-jun and cxcl-1 expression following ricin intoxication. Furthermore, compared with zak+/+ mice, zak-/- mice have decreased duodenal damage following in vivo ricin challenge. zak-/- mice demonstrate a distinct ribotoxic stress-associated phenotype in response to ricin and therefore provide a new animal model for in vivo studies of ZAK signaling.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2072-6651
2072-6651
DOI:10.3390/toxins8090259