Refining the genomic determinants underlying escape from X-chromosome inactivation

Abstract X-chromosome inactivation (XCI) epigenetically silences one X chromosome in every cell in female mammals. Although the majority of X-linked genes are silenced, in humans 20% or more are able to escape inactivation and continue to be expressed. Such escape genes are important contributors to...

Full description

Saved in:
Bibliographic Details
Published inNAR genomics and bioinformatics Vol. 5; no. 2; p. lqad052
Main Authors Peeters, Samantha, Leung, Tiffany, Fornes, Oriol, Farkas, Rachelle A, Wasserman, Wyeth W, Brown, Carolyn J
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.06.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract X-chromosome inactivation (XCI) epigenetically silences one X chromosome in every cell in female mammals. Although the majority of X-linked genes are silenced, in humans 20% or more are able to escape inactivation and continue to be expressed. Such escape genes are important contributors to sex differences in gene expression, and may impact the phenotypes of X aneuploidies; yet the mechanisms regulating escape from XCI are not understood. We have performed an enrichment analysis of transcription factor binding on the X chromosome, providing new evidence for enriched factors at the transcription start sites of escape genes. The top escape-enriched transcription factors were detected at the RPS4X promoter, a well-described human escape gene previously demonstrated to escape from XCI in a transgenic mouse model. Using a cell line model system that allows for targeted integration and inactivation of transgenes on the mouse X chromosome, we further assessed combinations of RPS4X promoter and genic elements for their ability to drive escape from XCI. We identified a small transgenic construct of only 6 kb capable of robust escape from XCI, establishing that gene-proximal elements are sufficient to permit escape, and highlighting the additive effect of multiple elements that work together in a context-specific fashion.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2631-9268
2631-9268
DOI:10.1093/nargab/lqad052