Chemical sensing: millimeter size resonant microcantilever performance

Based on the use of a resonant cantilever, a mass sensitive gas sensor for the detection of volatile organic compounds (VOC) has been developed. Analyte gases are absorbed by a sensitive layer deposited on the cantilever: the resulting mass change of the system implies the cantilever resonant freque...

Full description

Saved in:
Bibliographic Details
Published inJournal of micromechanics and microengineering Vol. 14; no. 9; pp. S23 - S30
Main Authors Fadel, L, Lochon, F, Dufour, I, Français, O
Format Journal Article Conference Proceeding
LanguageEnglish
Published Bristol IOP Publishing 01.09.2004
Institute of Physics
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Based on the use of a resonant cantilever, a mass sensitive gas sensor for the detection of volatile organic compounds (VOC) has been developed. Analyte gases are absorbed by a sensitive layer deposited on the cantilever: the resulting mass change of the system implies the cantilever resonant frequency decreases. In this paper, the process technology, based on the use of SOI wafer, is described. To integrate the measurement, piezoelectric and electromagnetic excitations are investigated and for the detection of microcantilever vibrations, piezoresistive measurement is performed. Then, the polymer choice and the spray coating system are detailed. Using various geometrical microcantilevers, the frequency dependence on mass change is measured and allows us to estimate the mass sensitivity (0.06 Hz ng-1). In gas detection the first experiments exhibit the sensor response, then by calculating the partition coefficient (K = 977), the minimum detectable concentration of ethanol is deduced and permits us to estimate the gas sensor resolution (14 ppm). Finally a comparison between millimeter size and micrometer size cantilevers shows the importance of noise in the design of an integrated sensor.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0960-1317
1361-6439
DOI:10.1088/0960-1317/14/9/004