Deep learning based topology guaranteed surface and MME segmentation of multiple sclerosis subjects from retinal OCT

Optical coherence tomography (OCT) is a noninvasive imaging modality that can be used to obtain depth images of the retina. Patients with multiple sclerosis (MS) have thinning retinal nerve fiber and ganglion cell layers, and approximately 5% of MS patients will develop microcystic macular edema (MM...

Full description

Saved in:
Bibliographic Details
Published inBiomedical optics express Vol. 10; no. 10; pp. 5042 - 5058
Main Authors He, Yufan, Carass, Aaron, Liu, Yihao, Jedynak, Bruno M., Solomon, Sharon D., Saidha, Shiv, Calabresi, Peter A., Prince, Jerry L.
Format Journal Article
LanguageEnglish
Published United States Optical Society of America 01.10.2019
Online AccessGet full text

Cover

Loading…
Abstract Optical coherence tomography (OCT) is a noninvasive imaging modality that can be used to obtain depth images of the retina. Patients with multiple sclerosis (MS) have thinning retinal nerve fiber and ganglion cell layers, and approximately 5% of MS patients will develop microcystic macular edema (MME) within the retina. Segmentation of both the retinal layers and MME can provide important information to help monitor MS progression. Graph-based segmentation with machine learning preprocessing is the leading method for retinal layer segmentation, providing accurate surface delineations with the correct topological ordering. However, graph methods are time-consuming and they do not optimally incorporate joint MME segmentation. This paper presents a deep network that extracts continuous, smooth, and topology-guaranteed surfaces and MMEs. The network learns shape priors automatically during training rather than being hard-coded as in graph methods. In this new approach, retinal surfaces and MMEs are segmented together with two cascaded deep networks in a single feed forward propagation. The proposed framework obtains retinal surfaces (separating the layers) with sub-pixel surface accuracy comparable to the best existing graph methods and MMEs with better accuracy than the state-of-the-art method. The full segmentation operation takes only ten seconds for a 3D volume.
AbstractList Optical coherence tomography (OCT) is a noninvasive imaging modality that can be used to obtain depth images of the retina. Patients with multiple sclerosis (MS) have thinning retinal nerve fiber and ganglion cell layers, and approximately 5% of MS patients will develop microcystic macular edema (MME) within the retina. Segmentation of both the retinal layers and MME can provide important information to help monitor MS progression. Graph-based segmentation with machine learning preprocessing is the leading method for retinal layer segmentation, providing accurate surface delineations with the correct topological ordering. However, graph methods are time-consuming and they do not optimally incorporate joint MME segmentation. This paper presents a deep network that extracts continuous, smooth, and topology-guaranteed surfaces and MMEs. The network learns shape priors automatically during training rather than being hard-coded as in graph methods. In this new approach, retinal surfaces and MMEs are segmented together with two cascaded deep networks in a single feed forward propagation. The proposed framework obtains retinal surfaces (separating the layers) with sub-pixel surface accuracy comparable to the best existing graph methods and MMEs with better accuracy than the state-of-the-art method. The full segmentation operation takes only ten seconds for a 3D volume.
Optical coherence tomography (OCT) is a noninvasive imaging modality that can be used to obtain depth images of the retina. Patients with multiple sclerosis (MS) have thinning retinal nerve fiber and ganglion cell layers, and approximately 5% of MS patients will develop microcystic macular edema (MME) within the retina. Segmentation of both the retinal layers and MME can provide important information to help monitor MS progression. Graph-based segmentation with machine learning preprocessing is the leading method for retinal layer segmentation, providing accurate surface delineations with the correct topological ordering. However, graph methods are time-consuming and they do not optimally incorporate joint MME segmentation. This paper presents a deep network that extracts continuous, smooth, and topology-guaranteed surfaces and MMEs. The network learns shape priors automatically during training rather than being hard-coded as in graph methods. In this new approach, retinal surfaces and MMEs are segmented together with two cascaded deep networks in a single feed forward propagation. The proposed framework obtains retinal surfaces (separating the layers) with sub-pixel surface accuracy comparable to the best existing graph methods and MMEs with better accuracy than the state-of-the-art method. The full segmentation operation takes only ten seconds for a 3D volume.Optical coherence tomography (OCT) is a noninvasive imaging modality that can be used to obtain depth images of the retina. Patients with multiple sclerosis (MS) have thinning retinal nerve fiber and ganglion cell layers, and approximately 5% of MS patients will develop microcystic macular edema (MME) within the retina. Segmentation of both the retinal layers and MME can provide important information to help monitor MS progression. Graph-based segmentation with machine learning preprocessing is the leading method for retinal layer segmentation, providing accurate surface delineations with the correct topological ordering. However, graph methods are time-consuming and they do not optimally incorporate joint MME segmentation. This paper presents a deep network that extracts continuous, smooth, and topology-guaranteed surfaces and MMEs. The network learns shape priors automatically during training rather than being hard-coded as in graph methods. In this new approach, retinal surfaces and MMEs are segmented together with two cascaded deep networks in a single feed forward propagation. The proposed framework obtains retinal surfaces (separating the layers) with sub-pixel surface accuracy comparable to the best existing graph methods and MMEs with better accuracy than the state-of-the-art method. The full segmentation operation takes only ten seconds for a 3D volume.
Author He, Yufan
Liu, Yihao
Carass, Aaron
Saidha, Shiv
Jedynak, Bruno M.
Solomon, Sharon D.
Prince, Jerry L.
Calabresi, Peter A.
Author_xml – sequence: 1
  givenname: Yufan
  surname: He
  fullname: He, Yufan
– sequence: 2
  givenname: Aaron
  surname: Carass
  fullname: Carass, Aaron
– sequence: 3
  givenname: Yihao
  surname: Liu
  fullname: Liu, Yihao
– sequence: 4
  givenname: Bruno M.
  surname: Jedynak
  fullname: Jedynak, Bruno M.
– sequence: 5
  givenname: Sharon D.
  surname: Solomon
  fullname: Solomon, Sharon D.
– sequence: 6
  givenname: Shiv
  surname: Saidha
  fullname: Saidha, Shiv
– sequence: 7
  givenname: Peter A.
  surname: Calabresi
  fullname: Calabresi, Peter A.
– sequence: 8
  givenname: Jerry L.
  surname: Prince
  fullname: Prince, Jerry L.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31646029$$D View this record in MEDLINE/PubMed
BookMark eNptUUtvFSEYJabG1tqlW8PSzVSGx8ywMdHr9ZG0uZu6JgzzMdIwMAJj0n8vzW1NNbLhy8d5kHNeopMQAyD0uiWXLev4u4-H_WWdCRGE02fojLaia3oyiJMn8ym6yPmW1MN5T9jwAp2ytuMdofIMlU8AK_agU3BhxqPOMOES1-jjfIfnTScdCtRd3pLVBrAOE76-3uMM8wKh6OJiwNHiZfPFrR5wNh5SzC5XyngLpmRsU1xwguKC9viwu3mFnlvtM1w83Ofo--f9ze5rc3X48m334aoxXLDSSKblQCgXgxyFZUMvrZC8kxQmIXrGgbUGzDRCa82gJdfCWujpNGo6GAnAztH7o-66jQtMpv43aa_W5Bad7lTUTv39EtwPNcdfquuHoWtlFXj7IJDizw1yUYvLBrzXAeKWFWU1X8qZ6Cr0zVOvPyaPUVcAOwJMTScnsMq4Y3zV2nnVEnXfqaqd3s_HTiur-Yf1KPx__G8KqKTC
CitedBy_id crossref_primary_10_1016_j_health_2023_100289
crossref_primary_10_1016_j_nrleng_2020_10_013
crossref_primary_10_1109_TMI_2023_3240757
crossref_primary_10_1016_j_procs_2024_09_527
crossref_primary_10_1016_j_artmed_2024_103006
crossref_primary_10_1007_s11263_021_01520_5
crossref_primary_10_1016_j_nrl_2020_10_017
crossref_primary_10_1016_j_neucom_2022_08_021
crossref_primary_10_1111_ceo_14258
crossref_primary_10_1016_j_survophthal_2024_06_005
crossref_primary_10_1145_3481043
crossref_primary_10_3390_s21227521
crossref_primary_10_1109_JBHI_2021_3066208
crossref_primary_10_1364_BOE_487518
crossref_primary_10_1016_j_heliyon_2024_e33911
crossref_primary_10_1109_TMI_2022_3191535
crossref_primary_10_1364_OE_472154
crossref_primary_10_1167_tvst_9_11_12
crossref_primary_10_1109_ACCESS_2023_3330493
crossref_primary_10_3390_s22052016
crossref_primary_10_1109_ACCESS_2023_3317011
crossref_primary_10_1016_j_neurol_2024_04_004
crossref_primary_10_1364_BOE_392648
crossref_primary_10_1371_journal_pone_0316089
crossref_primary_10_1038_s41598_020_64803_w
crossref_primary_10_1109_JBHI_2023_3313392
crossref_primary_10_1016_j_media_2020_101856
crossref_primary_10_3390_jimaging8050139
crossref_primary_10_1364_BOE_426803
crossref_primary_10_1109_TMI_2023_3317072
crossref_primary_10_1016_j_preteyeres_2020_100938
crossref_primary_10_1364_BOE_417212
crossref_primary_10_1016_j_preteyeres_2025_101350
crossref_primary_10_1186_s40537_022_00632_0
crossref_primary_10_1109_TIM_2020_3047430
crossref_primary_10_1007_s10278_024_01093_y
crossref_primary_10_1364_BOE_394715
crossref_primary_10_3390_s22010167
Cites_doi 10.1002/acn3.674
10.1364/BOE.5.001062
10.1016/j.ophtha.2017.10.031
10.1364/BOE.8.002732
10.1001/archopht.1995.01100030081025
10.1364/BOE.8.003627
10.1016/j.media.2017.05.001
10.1155/2015/136295
10.1002/jbio.201500239
10.1364/BOE.8.003292
10.1016/j.dib.2018.12.073
10.1016/j.media.2016.08.012
10.1093/brain/aws098
10.1364/BOE.6.000155
10.1212/CPJ.0000000000000187
10.1167/iovs.09-3715
10.1155/2014/128517
10.1364/BOE.9.004509
10.1212/WNL.0b013e31827b1a1c
10.1016/S1474-4422(12)70213-2
10.1177/1352458511418630
10.1364/BOE.4.001133
10.1364/OE.18.019413
10.1093/brain/aww219
10.1364/BOE.8.003440
10.1016/j.media.2015.08.008
10.1109/TMI.2009.2016958
10.1016/j.cmpb.2017.10.010
10.1093/brain/awq346
ContentType Journal Article
Copyright 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement.
2019 Optical Society of America under the terms of the 2019 Optical Society of America
Copyright_xml – notice: 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement.
– notice: 2019 Optical Society of America under the terms of the 2019 Optical Society of America
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1364/BOE.10.005042
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 2156-7085
EndPage 5058
ExternalDocumentID PMC6788619
31646029
10_1364_BOE_10_005042
Genre Journal Article
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: R01 NS082347
– fundername: NIA NIH HHS
  grantid: R01 AG027161
– fundername: NEI NIH HHS
  grantid: R01 EY024655
– fundername: National Institute of Neurological Disorders and Stroke
  grantid: R01-NS082347 (PI: P.A. Calabresi)
– fundername: National Eye Institute
  grantid: R01-EY024655 (PI: J.L. Prince)
GroupedDBID 4.4
53G
8SL
AAFWJ
AAWJZ
AAYXX
ADBBV
AEDJG
AENEX
AFPKN
AKGWG
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ATHME
AYPRP
AZSQR
AZYMN
BAWUL
BCNDV
CITATION
DIK
DSZJF
E3Z
EBS
EJD
GROUPED_DOAJ
GX1
HYE
KQ8
LPK
M~E
O5R
O5S
OFLFD
OK1
OPJBK
ROL
ROS
RPM
TR6
NPM
7X8
5PM
ID FETCH-LOGICAL-c453t-93a98024589b5f3879f594692ed55734e31cecdbe1fc8a94a5ffe72dba28c9ee3
ISSN 2156-7085
IngestDate Thu Aug 21 17:49:40 EDT 2025
Fri Jul 11 12:14:52 EDT 2025
Thu Apr 03 06:58:59 EDT 2025
Tue Jul 01 01:36:26 EDT 2025
Thu Apr 24 23:11:05 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement.
2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c453t-93a98024589b5f3879f594692ed55734e31cecdbe1fc8a94a5ffe72dba28c9ee3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doi.org/10.1364/boe.10.005042
PMID 31646029
PQID 2308524356
PQPubID 23479
PageCount 17
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6788619
proquest_miscellaneous_2308524356
pubmed_primary_31646029
crossref_citationtrail_10_1364_BOE_10_005042
crossref_primary_10_1364_BOE_10_005042
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-10-01
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Biomedical optics express
PublicationTitleAlternate Biomed Opt Express
PublicationYear 2019
Publisher Optical Society of America
Publisher_xml – name: Optical Society of America
References Saidha (boe-10-10-5042-R3) 2011; 134
Liu (boe-10-10-5042-R19) 2018
Saidha (boe-10-10-5042-R6) 2011; 17
Chiu (boe-10-10-5042-R16) 2010; 18
Maldonado (boe-10-10-5042-R4) 2015; 5
Novosel (boe-10-10-5042-R13) 2015; 26
Rothman (boe-10-10-5042-R5) 2019; 6
Medeiros (boe-10-10-5042-R2) 2009; 50
Gelfand (boe-10-10-5042-R10) 2012; 135
Lee (boe-10-10-5042-R26) 2017; 8
Saidha (boe-10-10-5042-R7) 2012; 11
Hee (boe-10-10-5042-R1) 1995; 113
Schlegl (boe-10-10-5042-R27) 2018; 125
Levine (boe-10-10-5042-R46) 2016; 17
Lang (boe-10-10-5042-R40) 2015; 6
González-López (boe-10-10-5042-R9) 2014; 2014
Garvin (boe-10-10-5042-R15) 2009; 28
Lang (boe-10-10-5042-R18) 2013; 4
Tian (boe-10-10-5042-R38) 2016; 9
Ratchford (boe-10-10-5042-R8) 2013; 80
Bhargava (boe-10-10-5042-R22) 2015; 2015
Girish (boe-10-10-5042-R41) 2018; 153
Roy (boe-10-10-5042-R28) 2017; 8
He (boe-10-10-5042-R42) 2019; 22
BenTaieb (boe-10-10-5042-R29) 2016; 9901
Dou (boe-10-10-5042-R47) 2017; 41
Shah (boe-10-10-5042-R32) 2018; 9
CarassZhou (boe-10-10-5042-R20) 2016
Knier (boe-10-10-5042-R11) 2016; 139
He (boe-10-10-5042-R25) 2017
Fang (boe-10-10-5042-R17) 2017; 8
Lee (boe-10-10-5042-R12) 2017; 35
Venhuizen (boe-10-10-5042-R24) 2017; 8
Carass (boe-10-10-5042-R14) 2014; 5
Ronneberger (boe-10-10-5042-R31) 2015
References_xml – volume: 6
  start-page: 222
  year: 2019
  ident: boe-10-10-5042-R5
  publication-title: Ann. Clin. Transl. Neurol.
  doi: 10.1002/acn3.674
– volume: 5
  start-page: 1062
  year: 2014
  ident: boe-10-10-5042-R14
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.5.001062
– volume: 125
  start-page: 549
  year: 2018
  ident: boe-10-10-5042-R27
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2017.10.031
– volume: 8
  start-page: 2732
  year: 2017
  ident: boe-10-10-5042-R17
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.8.002732
– volume: 113
  start-page: 325
  year: 1995
  ident: boe-10-10-5042-R1
  publication-title: Arch. Ophthalmol.
  doi: 10.1001/archopht.1995.01100030081025
– volume: 8
  start-page: 3627
  year: 2017
  ident: boe-10-10-5042-R28
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.8.003627
– volume: 41
  start-page: 40
  year: 2017
  ident: boe-10-10-5042-R47
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2017.05.001
– volume: 2015
  start-page: 1
  year: 2015
  ident: boe-10-10-5042-R22
  publication-title: Mult. Scler. Int.
  doi: 10.1155/2015/136295
– volume: 9
  start-page: 478
  year: 2016
  ident: boe-10-10-5042-R38
  publication-title: J. Biophotonics
  doi: 10.1002/jbio.201500239
– volume: 8
  start-page: 3292
  year: 2017
  ident: boe-10-10-5042-R24
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.8.003292
– start-page: 202
  year: 2017
  ident: boe-10-10-5042-R25
  article-title: Towards topological correct segmentation of macular oct from cascaded fcns
– volume: 22
  start-page: 601
  year: 2019
  ident: boe-10-10-5042-R42
  publication-title: Data Brief
  doi: 10.1016/j.dib.2018.12.073
– volume: 35
  start-page: 570
  year: 2017
  ident: boe-10-10-5042-R12
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.08.012
– volume: 9901
  start-page: 460
  year: 2016
  ident: boe-10-10-5042-R29
  article-title: Topology Aware Fully Convolutional Networks for Histology Gland Segmentation
– start-page: 259
  year: 2016
  ident: boe-10-10-5042-R20
  article-title: An Overview of the Multi-Object Geometric Deformable Model Approach in Biomedical Imaging
– volume: 135
  start-page: 1786
  year: 2012
  ident: boe-10-10-5042-R10
  publication-title: Brain
  doi: 10.1093/brain/aws098
– volume: 6
  start-page: 155
  year: 2015
  ident: boe-10-10-5042-R40
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.6.000155
– volume: 5
  start-page: 460
  year: 2015
  ident: boe-10-10-5042-R4
  publication-title: Neurol. Clin. Pract.
  doi: 10.1212/CPJ.0000000000000187
– volume: 50
  start-page: 5741
  year: 2009
  ident: boe-10-10-5042-R2
  publication-title: Invest. Ophthalmol. Visual Sci.
  doi: 10.1167/iovs.09-3715
– volume: 2014
  start-page: 1
  year: 2014
  ident: boe-10-10-5042-R9
  publication-title: BioMed Res. Int.
  doi: 10.1155/2014/128517
– volume: 9
  start-page: 4509
  year: 2018
  ident: boe-10-10-5042-R32
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.9.004509
– volume: 80
  start-page: 47
  year: 2013
  ident: boe-10-10-5042-R8
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e31827b1a1c
– volume: 11
  start-page: 963
  year: 2012
  ident: boe-10-10-5042-R7
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(12)70213-2
– start-page: 1445
  year: 2018
  ident: boe-10-10-5042-R19
  article-title: Multi-layer fast level set segmentation for macular oct
– volume: 17
  start-page: 1449
  year: 2011
  ident: boe-10-10-5042-R6
  publication-title: Mult. Scler.
  doi: 10.1177/1352458511418630
– volume: 4
  start-page: 1133
  year: 2013
  ident: boe-10-10-5042-R18
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.4.001133
– volume: 18
  start-page: 19413
  year: 2010
  ident: boe-10-10-5042-R16
  publication-title: Opt. Express
  doi: 10.1364/OE.18.019413
– start-page: 234
  year: 2015
  ident: boe-10-10-5042-R31
  article-title: U-Net: Convolutional Networks for Biomedical Image Segmentation
– volume: 139
  start-page: 2855
  year: 2016
  ident: boe-10-10-5042-R11
  publication-title: Brain
  doi: 10.1093/brain/aww219
– volume: 8
  start-page: 3440
  year: 2017
  ident: boe-10-10-5042-R26
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.8.003440
– volume: 26
  start-page: 146
  year: 2015
  ident: boe-10-10-5042-R13
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2015.08.008
– volume: 28
  start-page: 1436
  year: 2009
  ident: boe-10-10-5042-R15
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2009.2016958
– volume: 153
  start-page: 105
  year: 2018
  ident: boe-10-10-5042-R41
  publication-title: Comput. Methods Programs Biomedicine
  doi: 10.1016/j.cmpb.2017.10.010
– volume: 134
  start-page: 518
  year: 2011
  ident: boe-10-10-5042-R3
  publication-title: Brain
  doi: 10.1093/brain/awq346
– volume: 17
  start-page: 1334
  year: 2016
  ident: boe-10-10-5042-R46
  publication-title: The J. Mach. Learn. Res.
SSID ssj0000447038
Score 2.4489665
Snippet Optical coherence tomography (OCT) is a noninvasive imaging modality that can be used to obtain depth images of the retina. Patients with multiple sclerosis...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 5042
Title Deep learning based topology guaranteed surface and MME segmentation of multiple sclerosis subjects from retinal OCT
URI https://www.ncbi.nlm.nih.gov/pubmed/31646029
https://www.proquest.com/docview/2308524356
https://pubmed.ncbi.nlm.nih.gov/PMC6788619
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLaqIU3jAcG4lctkJMRLSUnj2HEep1KYEGE8dFLfKjtxugJLoraREL-In8mx47gJDAn2EkWpnUT5vp6bzzlG6GXmEyozFnhShAE4KCT14jznXpSBP0TzNCJShwaST-zsIvywoIvB4Gcna6neyXH649q6kpugCtcAV10l-x_IupvCBTgHfOEICMPxnzB-q1TV7vuwGmmFlIEtWTVtlVYAvv5scG1bb3JhKwOSZDbaqtWVrTky1qLLKtzCA0BtrrcwRX4xiR6m_kSXOmqz9Xw6760Cm9p9A3NZmX7P6nvlcjpMhNWI-Drfc3AKb9Vs1H4qNvscgI_r2gxdX4rSZfWABijEV0vBohwl426QYhK7dDfr0lZNYL7NRNVGdrMg1aghI-_A-GBe5Dc7-Djh7HdJ6HdELfWbtlxWbYMlx69VCYSFOtH9fDY2WXzttA49qivDD6Jbrfk2_tLvwf05mYJS50z3l70VgEOi98p4v5i4aJ4fhiA6uW3iCo9803vgETps7963f_5wan7Pze0YO_O76I71UvBpQ7l7aKCKY3S707vyGB0mNivjPtppHuKWh9jwELc8xHseYstDDDzEwEPc5SEuc9zyEDse4paHWPMQWx5i4OEDdPFuNp-eeXY3Dy8NKdl5MREx1wv9PJY0JzyKcxqHLA5URmlEQkUmqUozqSZ5ykUcCprnKgoyKQKexkqRh-igKAv1GGFGhJJBysF0BQmTBZKBnQqzlWChkpQP0ev2Gy9T2-pe77jybWnWb1m4BHT0eYPOEL1yw6umx8vfBr5oAVuCFNZLa6JQZb1dgiPPaQCuBxuiRw2A7lYt8kMU9aB1A3SH9_4vxfrSdHq3pHty45lP0dH-7_gMHew2tXoOVvROnpjo04mh8S94fs-_
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+based+topology+guaranteed+surface+and+MME+segmentation+of+multiple+sclerosis+subjects+from+retinal+OCT&rft.jtitle=Biomedical+optics+express&rft.au=He%2C+Yufan&rft.au=Carass%2C+Aaron&rft.au=Liu%2C+Yihao&rft.au=Jedynak%2C+Bruno+M.&rft.date=2019-10-01&rft.pub=Optical+Society+of+America&rft.eissn=2156-7085&rft.volume=10&rft.issue=10&rft.spage=5042&rft.epage=5058&rft_id=info:doi/10.1364%2FBOE.10.005042&rft_id=info%3Apmid%2F31646029&rft.externalDocID=PMC6788619
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2156-7085&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2156-7085&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2156-7085&client=summon