Deep learning based topology guaranteed surface and MME segmentation of multiple sclerosis subjects from retinal OCT
Optical coherence tomography (OCT) is a noninvasive imaging modality that can be used to obtain depth images of the retina. Patients with multiple sclerosis (MS) have thinning retinal nerve fiber and ganglion cell layers, and approximately 5% of MS patients will develop microcystic macular edema (MM...
Saved in:
Published in | Biomedical optics express Vol. 10; no. 10; pp. 5042 - 5058 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Optical Society of America
01.10.2019
|
Online Access | Get full text |
Cover
Loading…
Abstract | Optical coherence tomography (OCT) is a noninvasive imaging modality that can be used to obtain depth images of the retina. Patients with multiple sclerosis (MS) have thinning retinal nerve fiber and ganglion cell layers, and approximately 5% of MS patients will develop microcystic macular edema (MME) within the retina. Segmentation of both the retinal layers and MME can provide important information to help monitor MS progression. Graph-based segmentation with machine learning preprocessing is the leading method for retinal layer segmentation, providing accurate surface delineations with the correct topological ordering. However, graph methods are time-consuming and they do not optimally incorporate joint MME segmentation. This paper presents a deep network that extracts continuous, smooth, and topology-guaranteed surfaces and MMEs. The network learns shape priors automatically during training rather than being hard-coded as in graph methods. In this new approach, retinal surfaces and MMEs are segmented together with two cascaded deep networks in a single feed forward propagation. The proposed framework obtains retinal surfaces (separating the layers) with sub-pixel surface accuracy comparable to the best existing graph methods and MMEs with better accuracy than the state-of-the-art method. The full segmentation operation takes only ten seconds for a 3D volume. |
---|---|
AbstractList | Optical coherence tomography (OCT) is a noninvasive imaging modality that can be used to obtain depth images of the retina. Patients with multiple sclerosis (MS) have thinning retinal nerve fiber and ganglion cell layers, and approximately 5% of MS patients will develop microcystic macular edema (MME) within the retina. Segmentation of both the retinal layers and MME can provide important information to help monitor MS progression. Graph-based segmentation with machine learning preprocessing is the leading method for retinal layer segmentation, providing accurate surface delineations with the correct topological ordering. However, graph methods are time-consuming and they do not optimally incorporate joint MME segmentation. This paper presents a deep network that extracts continuous, smooth, and topology-guaranteed surfaces and MMEs. The network learns shape priors automatically during training rather than being hard-coded as in graph methods. In this new approach, retinal surfaces and MMEs are segmented together with two cascaded deep networks in a single feed forward propagation. The proposed framework obtains retinal surfaces (separating the layers) with sub-pixel surface accuracy comparable to the best existing graph methods and MMEs with better accuracy than the state-of-the-art method. The full segmentation operation takes only ten seconds for a 3D volume. Optical coherence tomography (OCT) is a noninvasive imaging modality that can be used to obtain depth images of the retina. Patients with multiple sclerosis (MS) have thinning retinal nerve fiber and ganglion cell layers, and approximately 5% of MS patients will develop microcystic macular edema (MME) within the retina. Segmentation of both the retinal layers and MME can provide important information to help monitor MS progression. Graph-based segmentation with machine learning preprocessing is the leading method for retinal layer segmentation, providing accurate surface delineations with the correct topological ordering. However, graph methods are time-consuming and they do not optimally incorporate joint MME segmentation. This paper presents a deep network that extracts continuous, smooth, and topology-guaranteed surfaces and MMEs. The network learns shape priors automatically during training rather than being hard-coded as in graph methods. In this new approach, retinal surfaces and MMEs are segmented together with two cascaded deep networks in a single feed forward propagation. The proposed framework obtains retinal surfaces (separating the layers) with sub-pixel surface accuracy comparable to the best existing graph methods and MMEs with better accuracy than the state-of-the-art method. The full segmentation operation takes only ten seconds for a 3D volume.Optical coherence tomography (OCT) is a noninvasive imaging modality that can be used to obtain depth images of the retina. Patients with multiple sclerosis (MS) have thinning retinal nerve fiber and ganglion cell layers, and approximately 5% of MS patients will develop microcystic macular edema (MME) within the retina. Segmentation of both the retinal layers and MME can provide important information to help monitor MS progression. Graph-based segmentation with machine learning preprocessing is the leading method for retinal layer segmentation, providing accurate surface delineations with the correct topological ordering. However, graph methods are time-consuming and they do not optimally incorporate joint MME segmentation. This paper presents a deep network that extracts continuous, smooth, and topology-guaranteed surfaces and MMEs. The network learns shape priors automatically during training rather than being hard-coded as in graph methods. In this new approach, retinal surfaces and MMEs are segmented together with two cascaded deep networks in a single feed forward propagation. The proposed framework obtains retinal surfaces (separating the layers) with sub-pixel surface accuracy comparable to the best existing graph methods and MMEs with better accuracy than the state-of-the-art method. The full segmentation operation takes only ten seconds for a 3D volume. |
Author | He, Yufan Liu, Yihao Carass, Aaron Saidha, Shiv Jedynak, Bruno M. Solomon, Sharon D. Prince, Jerry L. Calabresi, Peter A. |
Author_xml | – sequence: 1 givenname: Yufan surname: He fullname: He, Yufan – sequence: 2 givenname: Aaron surname: Carass fullname: Carass, Aaron – sequence: 3 givenname: Yihao surname: Liu fullname: Liu, Yihao – sequence: 4 givenname: Bruno M. surname: Jedynak fullname: Jedynak, Bruno M. – sequence: 5 givenname: Sharon D. surname: Solomon fullname: Solomon, Sharon D. – sequence: 6 givenname: Shiv surname: Saidha fullname: Saidha, Shiv – sequence: 7 givenname: Peter A. surname: Calabresi fullname: Calabresi, Peter A. – sequence: 8 givenname: Jerry L. surname: Prince fullname: Prince, Jerry L. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31646029$$D View this record in MEDLINE/PubMed |
BookMark | eNptUUtvFSEYJabG1tqlW8PSzVSGx8ywMdHr9ZG0uZu6JgzzMdIwMAJj0n8vzW1NNbLhy8d5kHNeopMQAyD0uiWXLev4u4-H_WWdCRGE02fojLaia3oyiJMn8ym6yPmW1MN5T9jwAp2ytuMdofIMlU8AK_agU3BhxqPOMOES1-jjfIfnTScdCtRd3pLVBrAOE76-3uMM8wKh6OJiwNHiZfPFrR5wNh5SzC5XyngLpmRsU1xwguKC9viwu3mFnlvtM1w83Ofo--f9ze5rc3X48m334aoxXLDSSKblQCgXgxyFZUMvrZC8kxQmIXrGgbUGzDRCa82gJdfCWujpNGo6GAnAztH7o-66jQtMpv43aa_W5Bad7lTUTv39EtwPNcdfquuHoWtlFXj7IJDizw1yUYvLBrzXAeKWFWU1X8qZ6Cr0zVOvPyaPUVcAOwJMTScnsMq4Y3zV2nnVEnXfqaqd3s_HTiur-Yf1KPx__G8KqKTC |
CitedBy_id | crossref_primary_10_1016_j_health_2023_100289 crossref_primary_10_1016_j_nrleng_2020_10_013 crossref_primary_10_1109_TMI_2023_3240757 crossref_primary_10_1016_j_procs_2024_09_527 crossref_primary_10_1016_j_artmed_2024_103006 crossref_primary_10_1007_s11263_021_01520_5 crossref_primary_10_1016_j_nrl_2020_10_017 crossref_primary_10_1016_j_neucom_2022_08_021 crossref_primary_10_1111_ceo_14258 crossref_primary_10_1016_j_survophthal_2024_06_005 crossref_primary_10_1145_3481043 crossref_primary_10_3390_s21227521 crossref_primary_10_1109_JBHI_2021_3066208 crossref_primary_10_1364_BOE_487518 crossref_primary_10_1016_j_heliyon_2024_e33911 crossref_primary_10_1109_TMI_2022_3191535 crossref_primary_10_1364_OE_472154 crossref_primary_10_1167_tvst_9_11_12 crossref_primary_10_1109_ACCESS_2023_3330493 crossref_primary_10_3390_s22052016 crossref_primary_10_1109_ACCESS_2023_3317011 crossref_primary_10_1016_j_neurol_2024_04_004 crossref_primary_10_1364_BOE_392648 crossref_primary_10_1371_journal_pone_0316089 crossref_primary_10_1038_s41598_020_64803_w crossref_primary_10_1109_JBHI_2023_3313392 crossref_primary_10_1016_j_media_2020_101856 crossref_primary_10_3390_jimaging8050139 crossref_primary_10_1364_BOE_426803 crossref_primary_10_1109_TMI_2023_3317072 crossref_primary_10_1016_j_preteyeres_2020_100938 crossref_primary_10_1364_BOE_417212 crossref_primary_10_1016_j_preteyeres_2025_101350 crossref_primary_10_1186_s40537_022_00632_0 crossref_primary_10_1109_TIM_2020_3047430 crossref_primary_10_1007_s10278_024_01093_y crossref_primary_10_1364_BOE_394715 crossref_primary_10_3390_s22010167 |
Cites_doi | 10.1002/acn3.674 10.1364/BOE.5.001062 10.1016/j.ophtha.2017.10.031 10.1364/BOE.8.002732 10.1001/archopht.1995.01100030081025 10.1364/BOE.8.003627 10.1016/j.media.2017.05.001 10.1155/2015/136295 10.1002/jbio.201500239 10.1364/BOE.8.003292 10.1016/j.dib.2018.12.073 10.1016/j.media.2016.08.012 10.1093/brain/aws098 10.1364/BOE.6.000155 10.1212/CPJ.0000000000000187 10.1167/iovs.09-3715 10.1155/2014/128517 10.1364/BOE.9.004509 10.1212/WNL.0b013e31827b1a1c 10.1016/S1474-4422(12)70213-2 10.1177/1352458511418630 10.1364/BOE.4.001133 10.1364/OE.18.019413 10.1093/brain/aww219 10.1364/BOE.8.003440 10.1016/j.media.2015.08.008 10.1109/TMI.2009.2016958 10.1016/j.cmpb.2017.10.010 10.1093/brain/awq346 |
ContentType | Journal Article |
Copyright | 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement. 2019 Optical Society of America under the terms of the 2019 Optical Society of America |
Copyright_xml | – notice: 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement. – notice: 2019 Optical Society of America under the terms of the 2019 Optical Society of America |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1364/BOE.10.005042 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 2156-7085 |
EndPage | 5058 |
ExternalDocumentID | PMC6788619 31646029 10_1364_BOE_10_005042 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: R01 NS082347 – fundername: NIA NIH HHS grantid: R01 AG027161 – fundername: NEI NIH HHS grantid: R01 EY024655 – fundername: National Institute of Neurological Disorders and Stroke grantid: R01-NS082347 (PI: P.A. Calabresi) – fundername: National Eye Institute grantid: R01-EY024655 (PI: J.L. Prince) |
GroupedDBID | 4.4 53G 8SL AAFWJ AAWJZ AAYXX ADBBV AEDJG AENEX AFPKN AKGWG ALMA_UNASSIGNED_HOLDINGS AOIJS ATHME AYPRP AZSQR AZYMN BAWUL BCNDV CITATION DIK DSZJF E3Z EBS EJD GROUPED_DOAJ GX1 HYE KQ8 LPK M~E O5R O5S OFLFD OK1 OPJBK ROL ROS RPM TR6 NPM 7X8 5PM |
ID | FETCH-LOGICAL-c453t-93a98024589b5f3879f594692ed55734e31cecdbe1fc8a94a5ffe72dba28c9ee3 |
ISSN | 2156-7085 |
IngestDate | Thu Aug 21 17:49:40 EDT 2025 Fri Jul 11 12:14:52 EDT 2025 Thu Apr 03 06:58:59 EDT 2025 Tue Jul 01 01:36:26 EDT 2025 Thu Apr 24 23:11:05 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement. 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c453t-93a98024589b5f3879f594692ed55734e31cecdbe1fc8a94a5ffe72dba28c9ee3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doi.org/10.1364/boe.10.005042 |
PMID | 31646029 |
PQID | 2308524356 |
PQPubID | 23479 |
PageCount | 17 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6788619 proquest_miscellaneous_2308524356 pubmed_primary_31646029 crossref_citationtrail_10_1364_BOE_10_005042 crossref_primary_10_1364_BOE_10_005042 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-10-01 |
PublicationDateYYYYMMDD | 2019-10-01 |
PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Biomedical optics express |
PublicationTitleAlternate | Biomed Opt Express |
PublicationYear | 2019 |
Publisher | Optical Society of America |
Publisher_xml | – name: Optical Society of America |
References | Saidha (boe-10-10-5042-R3) 2011; 134 Liu (boe-10-10-5042-R19) 2018 Saidha (boe-10-10-5042-R6) 2011; 17 Chiu (boe-10-10-5042-R16) 2010; 18 Maldonado (boe-10-10-5042-R4) 2015; 5 Novosel (boe-10-10-5042-R13) 2015; 26 Rothman (boe-10-10-5042-R5) 2019; 6 Medeiros (boe-10-10-5042-R2) 2009; 50 Gelfand (boe-10-10-5042-R10) 2012; 135 Lee (boe-10-10-5042-R26) 2017; 8 Saidha (boe-10-10-5042-R7) 2012; 11 Hee (boe-10-10-5042-R1) 1995; 113 Schlegl (boe-10-10-5042-R27) 2018; 125 Levine (boe-10-10-5042-R46) 2016; 17 Lang (boe-10-10-5042-R40) 2015; 6 González-López (boe-10-10-5042-R9) 2014; 2014 Garvin (boe-10-10-5042-R15) 2009; 28 Lang (boe-10-10-5042-R18) 2013; 4 Tian (boe-10-10-5042-R38) 2016; 9 Ratchford (boe-10-10-5042-R8) 2013; 80 Bhargava (boe-10-10-5042-R22) 2015; 2015 Girish (boe-10-10-5042-R41) 2018; 153 Roy (boe-10-10-5042-R28) 2017; 8 He (boe-10-10-5042-R42) 2019; 22 BenTaieb (boe-10-10-5042-R29) 2016; 9901 Dou (boe-10-10-5042-R47) 2017; 41 Shah (boe-10-10-5042-R32) 2018; 9 CarassZhou (boe-10-10-5042-R20) 2016 Knier (boe-10-10-5042-R11) 2016; 139 He (boe-10-10-5042-R25) 2017 Fang (boe-10-10-5042-R17) 2017; 8 Lee (boe-10-10-5042-R12) 2017; 35 Venhuizen (boe-10-10-5042-R24) 2017; 8 Carass (boe-10-10-5042-R14) 2014; 5 Ronneberger (boe-10-10-5042-R31) 2015 |
References_xml | – volume: 6 start-page: 222 year: 2019 ident: boe-10-10-5042-R5 publication-title: Ann. Clin. Transl. Neurol. doi: 10.1002/acn3.674 – volume: 5 start-page: 1062 year: 2014 ident: boe-10-10-5042-R14 publication-title: Biomed. Opt. Express doi: 10.1364/BOE.5.001062 – volume: 125 start-page: 549 year: 2018 ident: boe-10-10-5042-R27 publication-title: Ophthalmology doi: 10.1016/j.ophtha.2017.10.031 – volume: 8 start-page: 2732 year: 2017 ident: boe-10-10-5042-R17 publication-title: Biomed. Opt. Express doi: 10.1364/BOE.8.002732 – volume: 113 start-page: 325 year: 1995 ident: boe-10-10-5042-R1 publication-title: Arch. Ophthalmol. doi: 10.1001/archopht.1995.01100030081025 – volume: 8 start-page: 3627 year: 2017 ident: boe-10-10-5042-R28 publication-title: Biomed. Opt. Express doi: 10.1364/BOE.8.003627 – volume: 41 start-page: 40 year: 2017 ident: boe-10-10-5042-R47 publication-title: Med. Image Anal. doi: 10.1016/j.media.2017.05.001 – volume: 2015 start-page: 1 year: 2015 ident: boe-10-10-5042-R22 publication-title: Mult. Scler. Int. doi: 10.1155/2015/136295 – volume: 9 start-page: 478 year: 2016 ident: boe-10-10-5042-R38 publication-title: J. Biophotonics doi: 10.1002/jbio.201500239 – volume: 8 start-page: 3292 year: 2017 ident: boe-10-10-5042-R24 publication-title: Biomed. Opt. Express doi: 10.1364/BOE.8.003292 – start-page: 202 year: 2017 ident: boe-10-10-5042-R25 article-title: Towards topological correct segmentation of macular oct from cascaded fcns – volume: 22 start-page: 601 year: 2019 ident: boe-10-10-5042-R42 publication-title: Data Brief doi: 10.1016/j.dib.2018.12.073 – volume: 35 start-page: 570 year: 2017 ident: boe-10-10-5042-R12 publication-title: Med. Image Anal. doi: 10.1016/j.media.2016.08.012 – volume: 9901 start-page: 460 year: 2016 ident: boe-10-10-5042-R29 article-title: Topology Aware Fully Convolutional Networks for Histology Gland Segmentation – start-page: 259 year: 2016 ident: boe-10-10-5042-R20 article-title: An Overview of the Multi-Object Geometric Deformable Model Approach in Biomedical Imaging – volume: 135 start-page: 1786 year: 2012 ident: boe-10-10-5042-R10 publication-title: Brain doi: 10.1093/brain/aws098 – volume: 6 start-page: 155 year: 2015 ident: boe-10-10-5042-R40 publication-title: Biomed. Opt. Express doi: 10.1364/BOE.6.000155 – volume: 5 start-page: 460 year: 2015 ident: boe-10-10-5042-R4 publication-title: Neurol. Clin. Pract. doi: 10.1212/CPJ.0000000000000187 – volume: 50 start-page: 5741 year: 2009 ident: boe-10-10-5042-R2 publication-title: Invest. Ophthalmol. Visual Sci. doi: 10.1167/iovs.09-3715 – volume: 2014 start-page: 1 year: 2014 ident: boe-10-10-5042-R9 publication-title: BioMed Res. Int. doi: 10.1155/2014/128517 – volume: 9 start-page: 4509 year: 2018 ident: boe-10-10-5042-R32 publication-title: Biomed. Opt. Express doi: 10.1364/BOE.9.004509 – volume: 80 start-page: 47 year: 2013 ident: boe-10-10-5042-R8 publication-title: Neurology doi: 10.1212/WNL.0b013e31827b1a1c – volume: 11 start-page: 963 year: 2012 ident: boe-10-10-5042-R7 publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(12)70213-2 – start-page: 1445 year: 2018 ident: boe-10-10-5042-R19 article-title: Multi-layer fast level set segmentation for macular oct – volume: 17 start-page: 1449 year: 2011 ident: boe-10-10-5042-R6 publication-title: Mult. Scler. doi: 10.1177/1352458511418630 – volume: 4 start-page: 1133 year: 2013 ident: boe-10-10-5042-R18 publication-title: Biomed. Opt. Express doi: 10.1364/BOE.4.001133 – volume: 18 start-page: 19413 year: 2010 ident: boe-10-10-5042-R16 publication-title: Opt. Express doi: 10.1364/OE.18.019413 – start-page: 234 year: 2015 ident: boe-10-10-5042-R31 article-title: U-Net: Convolutional Networks for Biomedical Image Segmentation – volume: 139 start-page: 2855 year: 2016 ident: boe-10-10-5042-R11 publication-title: Brain doi: 10.1093/brain/aww219 – volume: 8 start-page: 3440 year: 2017 ident: boe-10-10-5042-R26 publication-title: Biomed. Opt. Express doi: 10.1364/BOE.8.003440 – volume: 26 start-page: 146 year: 2015 ident: boe-10-10-5042-R13 publication-title: Med. Image Anal. doi: 10.1016/j.media.2015.08.008 – volume: 28 start-page: 1436 year: 2009 ident: boe-10-10-5042-R15 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2009.2016958 – volume: 153 start-page: 105 year: 2018 ident: boe-10-10-5042-R41 publication-title: Comput. Methods Programs Biomedicine doi: 10.1016/j.cmpb.2017.10.010 – volume: 134 start-page: 518 year: 2011 ident: boe-10-10-5042-R3 publication-title: Brain doi: 10.1093/brain/awq346 – volume: 17 start-page: 1334 year: 2016 ident: boe-10-10-5042-R46 publication-title: The J. Mach. Learn. Res. |
SSID | ssj0000447038 |
Score | 2.4489665 |
Snippet | Optical coherence tomography (OCT) is a noninvasive imaging modality that can be used to obtain depth images of the retina. Patients with multiple sclerosis... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 5042 |
Title | Deep learning based topology guaranteed surface and MME segmentation of multiple sclerosis subjects from retinal OCT |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31646029 https://www.proquest.com/docview/2308524356 https://pubmed.ncbi.nlm.nih.gov/PMC6788619 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLaqIU3jAcG4lctkJMRLSUnj2HEep1KYEGE8dFLfKjtxugJLoraREL-In8mx47gJDAn2EkWpnUT5vp6bzzlG6GXmEyozFnhShAE4KCT14jznXpSBP0TzNCJShwaST-zsIvywoIvB4Gcna6neyXH649q6kpugCtcAV10l-x_IupvCBTgHfOEICMPxnzB-q1TV7vuwGmmFlIEtWTVtlVYAvv5scG1bb3JhKwOSZDbaqtWVrTky1qLLKtzCA0BtrrcwRX4xiR6m_kSXOmqz9Xw6760Cm9p9A3NZmX7P6nvlcjpMhNWI-Drfc3AKb9Vs1H4qNvscgI_r2gxdX4rSZfWABijEV0vBohwl426QYhK7dDfr0lZNYL7NRNVGdrMg1aghI-_A-GBe5Dc7-Djh7HdJ6HdELfWbtlxWbYMlx69VCYSFOtH9fDY2WXzttA49qivDD6Jbrfk2_tLvwf05mYJS50z3l70VgEOi98p4v5i4aJ4fhiA6uW3iCo9803vgETps7963f_5wan7Pze0YO_O76I71UvBpQ7l7aKCKY3S707vyGB0mNivjPtppHuKWh9jwELc8xHseYstDDDzEwEPc5SEuc9zyEDse4paHWPMQWx5i4OEDdPFuNp-eeXY3Dy8NKdl5MREx1wv9PJY0JzyKcxqHLA5URmlEQkUmqUozqSZ5ykUcCprnKgoyKQKexkqRh-igKAv1GGFGhJJBysF0BQmTBZKBnQqzlWChkpQP0ev2Gy9T2-pe77jybWnWb1m4BHT0eYPOEL1yw6umx8vfBr5oAVuCFNZLa6JQZb1dgiPPaQCuBxuiRw2A7lYt8kMU9aB1A3SH9_4vxfrSdHq3pHty45lP0dH-7_gMHew2tXoOVvROnpjo04mh8S94fs-_ |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+based+topology+guaranteed+surface+and+MME+segmentation+of+multiple+sclerosis+subjects+from+retinal+OCT&rft.jtitle=Biomedical+optics+express&rft.au=He%2C+Yufan&rft.au=Carass%2C+Aaron&rft.au=Liu%2C+Yihao&rft.au=Jedynak%2C+Bruno+M.&rft.date=2019-10-01&rft.pub=Optical+Society+of+America&rft.eissn=2156-7085&rft.volume=10&rft.issue=10&rft.spage=5042&rft.epage=5058&rft_id=info:doi/10.1364%2FBOE.10.005042&rft_id=info%3Apmid%2F31646029&rft.externalDocID=PMC6788619 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2156-7085&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2156-7085&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2156-7085&client=summon |