Deep learning based topology guaranteed surface and MME segmentation of multiple sclerosis subjects from retinal OCT
Optical coherence tomography (OCT) is a noninvasive imaging modality that can be used to obtain depth images of the retina. Patients with multiple sclerosis (MS) have thinning retinal nerve fiber and ganglion cell layers, and approximately 5% of MS patients will develop microcystic macular edema (MM...
Saved in:
Published in | Biomedical optics express Vol. 10; no. 10; pp. 5042 - 5058 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Optical Society of America
01.10.2019
|
Online Access | Get full text |
Cover
Loading…
Summary: | Optical coherence tomography (OCT) is a noninvasive imaging modality that can be used to obtain depth images of the retina. Patients with multiple sclerosis (MS) have thinning retinal nerve fiber and ganglion cell layers, and approximately 5% of MS patients will develop microcystic macular edema (MME) within the retina. Segmentation of both the retinal layers and MME can provide important information to help monitor MS progression. Graph-based segmentation with machine learning preprocessing is the leading method for retinal layer segmentation, providing accurate surface delineations with the correct topological ordering. However, graph methods are time-consuming and they do not optimally incorporate joint MME segmentation. This paper presents a deep network that extracts continuous, smooth, and topology-guaranteed surfaces and MMEs. The network learns shape priors automatically during training rather than being hard-coded as in graph methods. In this new approach, retinal surfaces and MMEs are segmented together with two cascaded deep networks in a single feed forward propagation. The proposed framework obtains retinal surfaces (separating the layers) with sub-pixel surface accuracy comparable to the best existing graph methods and MMEs with better accuracy than the state-of-the-art method. The full segmentation operation takes only ten seconds for a 3D volume. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2156-7085 2156-7085 |
DOI: | 10.1364/BOE.10.005042 |