Formation of Zr I and II lines under non-LTE conditions of stellar atmospheres

The formation of Zr I and Zr II lines in stellar atmospheres under non-LTE conditions has been considered for the first time. A model zirconium atom has been composed using 148 Zr I levels, 772 Zr II levels, and the ground Zr III state. Non-LTE calculations have been performed for model atmospheres...

Full description

Saved in:
Bibliographic Details
Published inAstronomy letters Vol. 36; no. 9; pp. 664 - 679
Main Authors Velichko, A. B., Mashonkina, L. I., Nilsson, H.
Format Journal Article
LanguageEnglish
Published Dordrecht SP MAIK Nauka/Interperiodica 01.09.2010
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The formation of Zr I and Zr II lines in stellar atmospheres under non-LTE conditions has been considered for the first time. A model zirconium atom has been composed using 148 Zr I levels, 772 Zr II levels, and the ground Zr III state. Non-LTE calculations have been performed for model atmospheres with T eff = 5500 and 6000 K, log g = 2.0 and 4.0, [M/H] = −3, −2, −1, 0. In the entire investigated range of parameters, the Zr I levels are shown to be underpopulated relative to their LTE populations in the line formation region. In contrast, the excited Zr II levels are overpopulated, while the ground state and lower excited levels of Zr II retain their LTE populations. Since the non-LTE effects cause the Zr I and Zr II spectral lines being investigated to weaken, the non-LTE corrections to the abundance derived from Zr I and Zr II lines are positive. For Zr II lines, they increase with decreasing metallicity and surface gravity up to 0.34 dex for the model with T eff = 5500, log g = 2.0, and [M/H] = −2. The non-LTE effects depend weakly on temperature. The non-LTE corrections for Zr I lines reach 0.33 dex for solar-metallicity models. Zr I and Zr II lines in the solar spectrum have been analyzed. The non-LTE zirconium abundances derived from lines in the two ionization stages are shown to agree between themselves within the error limits, while the LTE abundance difference is 0.28 dex. The zirconium abundance in the solar atmosphere (averaged over Zr I and Zr II lines) is log ɛ Zr,⊙ = 2.63 ± 0.07.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1063-7737
1562-6873
1562-6873
DOI:10.1134/S1063773710090057