Diet Modulates the Effects of Genetic Variants on the Vitamin D Metabolic Pathway and Bone Mineral Density in Mexican Postmenopausal Women

Macro- and micronutrients, such as proteins, vitamin D, and calcium (Ca), are important dietary factors that can modify bone mineral density (BMD). Genetic factors can interact with diet, affecting an individual's predisposition to osteoporosis. This study aimed to evaluate the associations bet...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of nutrition Vol. 151; no. 7; pp. 1726 - 1735
Main Authors Rivera-Paredez, Berenice, Quezada-Sánchez, Amado D, Denova-Gutiérrez, Edgar, Torres-Ibarra, Leticia, Flores, Yvonne N, Salmerón, Jorge, Velázquez-Cruz, Rafael
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.07.2021
Oxford University Press
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Macro- and micronutrients, such as proteins, vitamin D, and calcium (Ca), are important dietary factors that can modify bone mineral density (BMD). Genetic factors can interact with diet, affecting an individual's predisposition to osteoporosis. This study aimed to evaluate the associations between macro- and micronutrient intakes and BMD in Mexican postmenopausal women, and their interactions with genetic polymorphisms involved in the vitamin D metabolic pathway. We analyzed data from 317 postmenopausal women from the Health Workers Cohort Study, a longitudinal cohort studied in Cuernavaca, Mexico. Postmenopausal women participated in 2 data collection waves (2004–2006 and 2010–2011), with a mean time of 6.4 years. Dietary intake was assessed with a semi-quantitative FFQ. BMD (femoral neck, hip, and lumbar spine) was measured by DXA. Hybrid mixed-effects regression models were used to assess the associations of dietary macro- and micronutrients on BMD, after adjusting for confounding factors and for diet and single nucleotide polymorphism interactions. At baseline, the median age was 57 years (IQR, 50–64). Mean femoral neck, hip, and lumbar spine BMDs decreased over time. We observed statistically significant longitudinal associations for diet (Ca, vitamin D, magnesium, phosphorus, and protein intake) and BMD. Increases of vitamin D, Ca, and protein intakes by 1 SD were associated with mean increases in the femoral neck BMD (0.083 SD, 0.064 SD, and 0.130 SD, respectively). Multiple significant interactions were identified between several loci (CYP2R1, CYP24A1, CYP27B1, VDR, and DHCR7/NADSYN1) and diet for BMDs (femoral neck, hip, and lumbar spine), mainly for protein intake. Our data support associations of vitamin D, Ca, protein, phosphorous, and magnesium consumption with BMD in Mexican postmenopausal women and suggest possible gene-diet interactions. These results could facilitate future personalized nutrition recommendations to help prevent low BMD.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0022-3166
1541-6100
1541-6100
DOI:10.1093/jn/nxab067