Star-Shaped Crosslinker for Multifunctional Shape Memory Polyurethane

Star-shaped cyclophosphazene (ACP) was employed as covalent crosslinker to form a rigid segment in polyurethanes network, to enhance the mechanical performance and to add extra flame retardant property. The effects of different ACP contents on the shape memory ability and fire resistance performance...

Full description

Saved in:
Bibliographic Details
Published inPolymers Vol. 12; no. 4; p. 740
Main Authors Song, Xiuhuan, Chi, Hong, Li, Zibiao, Li, Tianduo, Wang, FuKe
Format Journal Article
LanguageEnglish
Published Switzerland MDPI 26.03.2020
MDPI AG
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Star-shaped cyclophosphazene (ACP) was employed as covalent crosslinker to form a rigid segment in polyurethanes network, to enhance the mechanical performance and to add extra flame retardant property. The effects of different ACP contents on the shape memory ability and fire resistance performance of polyurethane (PU) were studied. Tensile tests suggested high flexibility of the PUs with the maximum elongation-at-break of 161.59%. Dynamic mechanical analysis (DMA) indicated good shape recovery ratio of 72.58% after more than three repeated cycles. Under thermal treatment, the temporary shape could recover to its original state in 10 s. The peak heat release rate (pHRR), total heat released (THR) and temperature at pHRR (T ) of flame-retardant shape memory polyurethane (FSPU) by micro-combustion calorimeter (MCC) was as low as 183.2 W/g, 21.4 KJ/g, 330.8 °C respectively, suggesting good inherent fire-resistant performance. As amine-containing crosslinkers are one of the most common building units in thermosetting polymers, we anticipate that our finding will have significant benefits beyond shape memory and fire-resistance.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2073-4360
2073-4360
DOI:10.3390/POLYM12040740