Spatiotemporal characteristics of retinal response to network-mediated photovoltaic stimulation

Subretinal prostheses aim at restoring sight to patients blinded by photoreceptor degeneration using electrical activation of the surviving inner retinal neurons. Today, such implants deliver visual information with low-frequency stimulation, resulting in discontinuous visual percepts. We measured r...

Full description

Saved in:
Bibliographic Details
Published inJournal of neurophysiology Vol. 119; no. 2; pp. 389 - 400
Main Authors Ho, Elton, Smith, Richard, Goetz, Georges, Lei, Xin, Galambos, Ludwig, Kamins, Theodore I, Harris, James, Mathieson, Keith, Palanker, Daniel, Sher, Alexander
Format Journal Article
LanguageEnglish
Published United States American Physiological Society 01.02.2018
SeriesBiology of Neuroengineering Interfaces
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Subretinal prostheses aim at restoring sight to patients blinded by photoreceptor degeneration using electrical activation of the surviving inner retinal neurons. Today, such implants deliver visual information with low-frequency stimulation, resulting in discontinuous visual percepts. We measured retinal responses to complex visual stimuli delivered at video rate via a photovoltaic subretinal implant and by visible light. Using a multielectrode array to record from retinal ganglion cells (RGCs) in the healthy and degenerated rat retina ex vivo, we estimated their spatiotemporal properties from the spike-triggered average responses to photovoltaic binary white noise stimulus with 70-μm pixel size at 20-Hz frame rate. The average photovoltaic receptive field size was 194 ± 3 μm (mean ± SE), similar to that of visual responses (221 ± 4 μm), but response latency was significantly shorter with photovoltaic stimulation. Both visual and photovoltaic receptive fields had an opposing center-surround structure. In the healthy retina, ON RGCs had photovoltaic OFF responses, and vice versa. This reversal is consistent with depolarization of photoreceptors by electrical pulses, as opposed to their hyperpolarization under increasing light, although alternative mechanisms cannot be excluded. In degenerate retina, both ON and OFF photovoltaic responses were observed, but in the absence of visual responses, it is not clear what functional RGC types they correspond to. Degenerate retina maintained the antagonistic center-surround organization of receptive fields. These fast and spatially localized network-mediated ON and OFF responses to subretinal stimulation via photovoltaic pixels with local return electrodes raise confidence in the possibility of providing more functional prosthetic vision. NEW & NOTEWORTHY Retinal prostheses currently in clinical use have struggled to deliver visual information at naturalistic frequencies, resulting in discontinuous percepts. We demonstrate modulation of the retinal ganglion cells (RGC) activity using complex spatiotemporal stimuli delivered via subretinal photovoltaic implant at 20 Hz in healthy and in degenerate retina. RGCs exhibit fast and localized ON and OFF network-mediated responses, with antagonistic center-surround organization of their receptive fields.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
E. Ho and R. Smith contributed equally to this work.
ISSN:0022-3077
1522-1598
DOI:10.1152/jn.00872.2016