Recent Advances in Conjugated Polymers for Visible‐Light‐Driven Water Splitting

With the ambition of solving the challenges of the shortage of fossil fuels and their associated environmental pollution, visible‐light‐driven splitting of water into hydrogen and oxygen using semiconductor photocatalysts has emerged as a promising technology to provide environmentally friendly ener...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 32; no. 28; pp. e1907296 - n/a
Main Authors Zhao, Chengxiao, Chen, Zupeng, Shi, Run, Yang, Xiaofei, Zhang, Tierui
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.07.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:With the ambition of solving the challenges of the shortage of fossil fuels and their associated environmental pollution, visible‐light‐driven splitting of water into hydrogen and oxygen using semiconductor photocatalysts has emerged as a promising technology to provide environmentally friendly energy vectors. Among the current library of developed photocatalysts, organic conjugated polymers present unique advantages of sufficient light‐absorption efficiency, excellent stability, tunable electronic properties, and economic applicability. As a class of rising photocatalysts, organic conjugated polymers offer high flexibility in tuning the framework of the backbone and porosity to fulfill the requirements for photocatalytic applications. In the past decade, significant progress has been made in visible‐light‐driven water splitting employing organic conjugated polymers. The recent development of the structural design principles of organic conjugated polymers (including linear, crosslinked, and supramolecular self‐assembled polymers) toward efficient photocatalytic hydrogen evolution, oxygen evolution, and overall water splitting is described, thus providing a comprehensive reference for the field. Finally, current challenges and perspectives are also discussed. Molecular design strategies of various conjugated polymers for photocatalytic water splitting are reviewed. The structure–property relationships between functional groups, building blocks, and photocatalytic water splitting in a variety of conjugated polymers are explored. Furthermore, key factors that contribute to a highly efficient polymer photocatalyst in visible‐light‐driven water splitting are outlined.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ISSN:0935-9648
1521-4095
1521-4095
DOI:10.1002/adma.201907296