Fast dynamic brain PET imaging using stochastic variational prediction for recurrent frame generation
Purpose We assess the performance of a recurrent frame generation algorithm for prediction of late frames from initial frames in dynamic brain PET imaging. Methods Clinical dynamic 18F‐DOPA brain PET/CT studies of 46 subjects with ten folds cross‐validation were retrospectively employed. A novel sto...
Saved in:
Published in | Medical physics (Lancaster) Vol. 48; no. 9; pp. 5059 - 5071 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
John Wiley and Sons Inc
01.09.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Purpose
We assess the performance of a recurrent frame generation algorithm for prediction of late frames from initial frames in dynamic brain PET imaging.
Methods
Clinical dynamic 18F‐DOPA brain PET/CT studies of 46 subjects with ten folds cross‐validation were retrospectively employed. A novel stochastic adversarial video prediction model was implemented to predict the last 13 frames (25–90 minutes) from the initial 13 frames (0–25 minutes). The quantitative analysis of the predicted dynamic PET frames was performed for the test and validation dataset using established metrics.
Results
The predicted dynamic images demonstrated that the model is capable of predicting the trend of change in time‐varying tracer biodistribution. The Bland‐Altman plots reported the lowest tracer uptake bias (−0.04) for the putamen region and the smallest variance (95% CI: −0.38, +0.14) for the cerebellum. The region‐wise Patlak graphical analysis in the caudate and putamen regions for eight subjects from the test and validation dataset showed that the average bias for Ki and distribution volume was 4.3%, 5.1% and 4.4%, 4.2%, (P‐value <0.05), respectively.
Conclusion
We have developed a novel deep learning approach for fast dynamic brain PET imaging capable of generating the last 65 minutes time frames from the initial 25 minutes frames, thus enabling significant reduction in scanning time. |
---|---|
AbstractList | Purpose
We assess the performance of a recurrent frame generation algorithm for prediction of late frames from initial frames in dynamic brain PET imaging.
Methods
Clinical dynamic 18F‐DOPA brain PET/CT studies of 46 subjects with ten folds cross‐validation were retrospectively employed. A novel stochastic adversarial video prediction model was implemented to predict the last 13 frames (25–90 minutes) from the initial 13 frames (0–25 minutes). The quantitative analysis of the predicted dynamic PET frames was performed for the test and validation dataset using established metrics.
Results
The predicted dynamic images demonstrated that the model is capable of predicting the trend of change in time‐varying tracer biodistribution. The Bland‐Altman plots reported the lowest tracer uptake bias (−0.04) for the putamen region and the smallest variance (95% CI: −0.38, +0.14) for the cerebellum. The region‐wise Patlak graphical analysis in the caudate and putamen regions for eight subjects from the test and validation dataset showed that the average bias for Ki and distribution volume was 4.3%, 5.1% and 4.4%, 4.2%, (P‐value <0.05), respectively.
Conclusion
We have developed a novel deep learning approach for fast dynamic brain PET imaging capable of generating the last 65 minutes time frames from the initial 25 minutes frames, thus enabling significant reduction in scanning time. We assess the performance of a recurrent frame generation algorithm for prediction of late frames from initial frames in dynamic brain PET imaging.PURPOSEWe assess the performance of a recurrent frame generation algorithm for prediction of late frames from initial frames in dynamic brain PET imaging.Clinical dynamic 18 F-DOPA brain PET/CT studies of 46 subjects with ten folds cross-validation were retrospectively employed. A novel stochastic adversarial video prediction model was implemented to predict the last 13 frames (25-90 minutes) from the initial 13 frames (0-25 minutes). The quantitative analysis of the predicted dynamic PET frames was performed for the test and validation dataset using established metrics.METHODSClinical dynamic 18 F-DOPA brain PET/CT studies of 46 subjects with ten folds cross-validation were retrospectively employed. A novel stochastic adversarial video prediction model was implemented to predict the last 13 frames (25-90 minutes) from the initial 13 frames (0-25 minutes). The quantitative analysis of the predicted dynamic PET frames was performed for the test and validation dataset using established metrics.The predicted dynamic images demonstrated that the model is capable of predicting the trend of change in time-varying tracer biodistribution. The Bland-Altman plots reported the lowest tracer uptake bias (-0.04) for the putamen region and the smallest variance (95% CI: -0.38, +0.14) for the cerebellum. The region-wise Patlak graphical analysis in the caudate and putamen regions for eight subjects from the test and validation dataset showed that the average bias for K i and distribution volume was 4.3%, 5.1% and 4.4%, 4.2%, (P-value <0.05), respectively.RESULTSThe predicted dynamic images demonstrated that the model is capable of predicting the trend of change in time-varying tracer biodistribution. The Bland-Altman plots reported the lowest tracer uptake bias (-0.04) for the putamen region and the smallest variance (95% CI: -0.38, +0.14) for the cerebellum. The region-wise Patlak graphical analysis in the caudate and putamen regions for eight subjects from the test and validation dataset showed that the average bias for K i and distribution volume was 4.3%, 5.1% and 4.4%, 4.2%, (P-value <0.05), respectively.We have developed a novel deep learning approach for fast dynamic brain PET imaging capable of generating the last 65 minutes time frames from the initial 25 minutes frames, thus enabling significant reduction in scanning time.CONCLUSIONWe have developed a novel deep learning approach for fast dynamic brain PET imaging capable of generating the last 65 minutes time frames from the initial 25 minutes frames, thus enabling significant reduction in scanning time. |
Author | Mirsadeghi, Ehsan Sanaat, Amirhossein Zaidi, Habib Ginovart, Nathalie Razeghi, Behrooz |
AuthorAffiliation | 7 Geneva University Neurocenter Geneva University Geneva Switzerland 10 Department of Nuclear Medicine University of Southern Denmark Odense Denmark 6 Department of Basic Neurosciences Geneva University Geneva Switzerland 9 University Medical Center Groningen Netherlands 2 Electrical Engineering Department Amirkabir University of Technology Tehran Iran 5 Department of Psychiatry Geneva University Geneva Switzerland 1 Division of Nuclear Medicine and Molecular Imaging Geneva University Hospital Geneva Switzerland 8 Department of Nuclear Medicine and Molecular Imaging University of Groningen Groningen Netherlands 4 School of Engineering and Applied Sciences Harvard University Boston USA 3 Department of Computer Sciences University of Geneva Geneva Switzerland |
AuthorAffiliation_xml | – name: 6 Department of Basic Neurosciences Geneva University Geneva Switzerland – name: 10 Department of Nuclear Medicine University of Southern Denmark Odense Denmark – name: 7 Geneva University Neurocenter Geneva University Geneva Switzerland – name: 5 Department of Psychiatry Geneva University Geneva Switzerland – name: 4 School of Engineering and Applied Sciences Harvard University Boston USA – name: 8 Department of Nuclear Medicine and Molecular Imaging University of Groningen Groningen Netherlands – name: 1 Division of Nuclear Medicine and Molecular Imaging Geneva University Hospital Geneva Switzerland – name: 3 Department of Computer Sciences University of Geneva Geneva Switzerland – name: 9 University Medical Center Groningen Netherlands – name: 2 Electrical Engineering Department Amirkabir University of Technology Tehran Iran |
Author_xml | – sequence: 1 givenname: Amirhossein surname: Sanaat fullname: Sanaat, Amirhossein organization: Geneva University Hospital – sequence: 2 givenname: Ehsan surname: Mirsadeghi fullname: Mirsadeghi, Ehsan organization: Amirkabir University of Technology – sequence: 3 givenname: Behrooz surname: Razeghi fullname: Razeghi, Behrooz organization: Harvard University – sequence: 4 givenname: Nathalie surname: Ginovart fullname: Ginovart, Nathalie organization: Geneva University – sequence: 5 givenname: Habib surname: Zaidi fullname: Zaidi, Habib email: habib.zaidi@hcuge.ch organization: University of Southern Denmark |
BookMark | eNp1kVtrFDEUx4NU7LYKfoQ8-jLbTC6bzIsgpdVCxT6szyGbnGwjM8mYzFT225u9YLEohBMO53f-53aBzmKKgND7lixbQujVMC5bQVbsFVpQLlnDKenO0IKQjjeUE3GOLkr5QUhFBHmDzhlvJZdKLhDcmjJht4tmCBZvsgkRP9yscRjMNsQtnsvelinZxwpW5MnkYKaQounxmMEFu3ewTxlnsHPOECfssxkAbyFCPrBv0Wtv-gLvTv8l-n57s77-0tx_-3x3_em-sVww1gD3HRjWGW4tk8JSpwQT0FpBqPdKuQ2tb6UoSGms8qvWKS-cks6A63zHLtHHo-44bwZwtvaSTa_HXMfJO51M0H9HYnjU2_SklWiVEKQKfDgJ5PRzhjLpIRQLfW8ipLloKrgQ3YpK8YzanErJ4P-UaYneX0UPoz5cpaLLF6gN02ExtYnQ_yuhOSb8Cj3s_iusvz4c-d-VC6DJ |
CitedBy_id | crossref_primary_10_1002_hbm_26068 crossref_primary_10_1186_s40658_024_00698_0 crossref_primary_10_1007_s12149_021_01710_8 crossref_primary_10_1007_s00259_024_06755_1 crossref_primary_10_1016_j_neuroimage_2021_118697 crossref_primary_10_1088_1361_6560_ac950a crossref_primary_10_1007_s10278_021_00536_0 crossref_primary_10_1088_1361_6560_ac7fd8 crossref_primary_10_1007_s13139_024_00845_6 crossref_primary_10_1109_TRPMS_2023_3253261 crossref_primary_10_1016_j_phrs_2023_106984 crossref_primary_10_1007_s00259_024_07012_1 |
Cites_doi | 10.2967/jnumed.119.227231 10.1109/ACCESS.2019.2929230 10.2967/jnumed.106.032680 10.1146/annurev-bioeng-062117-121056 10.2967/jnumed.112.107417 10.1097/MNM.0b013e3282f3a515 10.1016/j.jcmg.2014.08.003 10.1016/j.media.2019.04.001 10.1016/0169-2607(95)01703-8 10.1088/0031-9155/45/12/302 10.1109/NSSMIC.2008.4774271 10.2967/jnmt.119.227942 10.1053/j.semnuclmed.2018.10.015 10.1109/42.764885 10.2967/jnumed.108.057182 10.1007/s002590000312 10.1371/journal.pone.0184667 10.1109/ICCV.2017.308 10.1016/j.cpet.2007.08.003 10.1088/0031-9155/55/20/R01 10.1007/978-3-540-76735-0 10.1007/s00259-018-4153-6 10.1109/CVPR.2017.230 10.1148/radiol.2018180940 10.1016/j.ejmp.2020.11.004 10.1118/1.3160108 10.1109/CVPR.2018.00165 10.2967/jnumed.119.239327 10.1145/3126686.3126737 10.1259/bjr.20170508 10.1007/s00259-020-05167-1 10.1186/s13550-019-0566-x 10.1007/s11307-010-0384-z 10.1007/s002590050355 10.1109/CVPR.2017.319 10.1109/TMI.2019.2927199 |
ContentType | Journal Article |
Copyright | 2021 The Authors. published by Wiley Periodicals LLC on behalf of American Association of Physicists in Medicine 2021 The Authors. Medical Physics published by Wiley Periodicals LLC on behalf of American Association of Physicists in Medicine. |
Copyright_xml | – notice: 2021 The Authors. published by Wiley Periodicals LLC on behalf of American Association of Physicists in Medicine – notice: 2021 The Authors. Medical Physics published by Wiley Periodicals LLC on behalf of American Association of Physicists in Medicine. |
DBID | 24P AAYXX CITATION 7X8 5PM |
DOI | 10.1002/mp.15063 |
DatabaseName | WRHA-Wiley Online Library Open Access CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
DocumentTitleAlternate | SANAAT et al |
EISSN | 2473-4209 |
EndPage | 5071 |
ExternalDocumentID | PMC8518550 10_1002_mp_15063 MP15063 |
Genre | article |
GrantInformation_xml | – fundername: Swiss National Science Foundation funderid: 320030_176052; 31003A_179373 – fundername: ; grantid: 320030_176052; 31003A_179373 |
GroupedDBID | --- --Z -DZ .GJ 0R~ 1OB 1OC 24P 29M 2WC 33P 36B 3O- 4.4 53G 5GY 5RE 5VS AAHHS AAHQN AAIPD AAMNL AANLZ AAQQT AASGY AAXRX AAYCA AAZKR ABCUV ABDPE ABEFU ABFTF ABJNI ABLJU ABQWH ABTAH ABXGK ACAHQ ACBEA ACCFJ ACCZN ACGFO ACGFS ACGOF ACPOU ACXBN ACXQS ADBBV ADBTR ADKYN ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AHBTC AIACR AIAGR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB ASPBG BFHJK C45 CS3 DCZOG DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMB EMOBN F5P HDBZQ HGLYW I-F KBYEO LATKE LEEKS LOXES LUTES LYRES MEWTI O9- OVD P2P P2W PALCI PHY RJQFR RNS ROL SAMSI SUPJJ SV3 TEORI TN5 TWZ USG WOHZO WXSBR XJT ZGI ZVN ZXP ZY4 ZZTAW AAYXX ADMLS AEYWJ AGHNM AGYGG CITATION 7X8 AAMMB AEFGJ AGXDD AIDQK AIDYY 5PM |
ID | FETCH-LOGICAL-c4533-e4f9ea39a4cc375c2d8535e1c502ff88db2db2682e77ac8f61d8f5d87daed9f93 |
IEDL.DBID | 24P |
ISSN | 0094-2405 2473-4209 |
IngestDate | Thu Aug 21 14:32:19 EDT 2025 Thu Jul 10 18:50:13 EDT 2025 Thu Apr 24 23:08:26 EDT 2025 Tue Jul 01 03:54:45 EDT 2025 Wed Jan 22 16:27:57 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | Attribution-NonCommercial-NoDerivs This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4533-e4f9ea39a4cc375c2d8535e1c502ff88db2db2682e77ac8f61d8f5d87daed9f93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmp.15063 |
PMID | 34174787 |
PQID | 2545596275 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8518550 proquest_miscellaneous_2545596275 crossref_primary_10_1002_mp_15063 crossref_citationtrail_10_1002_mp_15063 wiley_primary_10_1002_mp_15063_MP15063 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2021 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 09 year: 2021 text: September 2021 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Medical physics (Lancaster) |
PublicationYear | 2021 |
Publisher | John Wiley and Sons Inc |
Publisher_xml | – name: John Wiley and Sons Inc |
References | 2010; 55 2019; 7 2019; 9 2021; 48 2019; 290 2000; 27 2000; 45 2019; 55 2020; 61 1999; 26 2020; 80 2004; 45 2009 2020; 39 2008 2011; 13 1993 2012; 53 2009; 36 2019; 60 2013; 32 2009; 50 1995; 48 2019; 21 1999; 18 2019; 46 2008; 29 2019; 47 2017; 12 2018; 91 2019; 49 2018 2017 2015 2007; 2 2014 2013 2014; 7 2007; 48 e_1_2_9_31_1 e_1_2_9_10_1 e_1_2_9_35_1 García‐Gómez FJ (e_1_2_9_48_1) 2013; 32 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_13_1 e_1_2_9_32_1 Whone AL (e_1_2_9_50_1) 2004; 45 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_29_1 |
References_xml | – year: 2009 – volume: 39 start-page: 366 issue: 2 year: 2020 end-page: 376 article-title: Use of a tracer‐specific deep artificial neural net to denoise dynamic PET images publication-title: IEEE Trans Med Imaging – volume: 48 start-page: 661 issue: 4 year: 2007 end-page: 673 article-title: Recent advances in SPECT imaging publication-title: J Nucl Med – volume: 55 start-page: 27 year: 2019 end-page: 40 article-title: Unsupervised tumor detection in Dynamic PET/CT imaging of the prostate publication-title: Med Image Anal – volume: 80 start-page: 193 year: 2020 end-page: 200 article-title: Short‐duration dynamic FDG PET imaging: optimization and clinical application publication-title: Phys Med – volume: 50 start-page: 11S issue: Suppl 1 year: 2009 end-page: 20S article-title: Standards for PET image acquisition and quantitative data analysis publication-title: J Nucl Med – volume: 26 start-page: 22 issue: 1 year: 1999 end-page: 30 article-title: A PET study of 18FDG uptake in soft tissue masses publication-title: Eur J Nucl Med – volume: 48 start-page: 257 issue: 3 year: 1995 end-page: 262 article-title: MedCalc: a new computer program for medical statistics publication-title: Comput Methods Programs Biomed – volume: 32 start-page: 350 issue: 6 year: 2013 end-page: 356 article-title: Elaboration of the SPM template for the standardization of SPECT images with 123I‐Ioflupane publication-title: Rev Esp Med Nucl Imagen Mol – volume: 7 start-page: 96594 year: 2019 end-page: 96603 article-title: Dynamic PET image denoising using deep convolutional neural networks without prior training datasets publication-title: IEEE Access – year: 2018 – year: 2014 – volume: 27 start-page: 1538 issue: 10 year: 2000 end-page: 1542 article-title: Short dynamic FDG‐PET imaging protocol for patients with lung cancer publication-title: Eur J Nucl Med – volume: 18 start-page: 185 issue: 3 year: 1999 end-page: 195 article-title: Fast spatio‐temporal image reconstruction for dynamic PET publication-title: IEEE Trans Med Imaging – volume: 29 start-page: 193 issue: 3 year: 2008 end-page: 207 article-title: PET versus SPECT: strengths, limitations and challenges publication-title: Nucl Med Commun – volume: 45 start-page: 3525 issue: 12 year: 2000 end-page: 3543 article-title: Performance of the dynamic single photon emission computed tomography (dSPECT) method for decreasing or increasing activity changes publication-title: Phys Med Biol – volume: 13 start-page: 754 issue: 4 year: 2011 end-page: 758 article-title: Shortening the duration of [18 F] FDG PET brain examination for diagnosis of brain glioma publication-title: Mol Imaging Biol – volume: 45 start-page: 1135 issue: 7 year: 2004 end-page: 1145 article-title: A technique for standardized central analysis of 6–18F‐fluoro‐L‐DOPA PET data from a multicenter study publication-title: J Nucl Med – volume: 60 start-page: 1340 issue: 10 year: 2019 end-page: 1346 article-title: State of the Art PET/MRI: applications and limitations ‐ Summary of the first ISMRM/SNMMI Co‐Provided Workshop on PET/MRI publication-title: J Nucl Med – volume: 290 start-page: 649 issue: 3 year: 2019 end-page: 656 article-title: Ultra‐low‐dose (18)F‐Florbetaben amyloid PET imaging using deep learning with multi‐contrast MRI inputs publication-title: Radiology – volume: 91 start-page: 20170508 issue: 1081 year: 2018 article-title: Towards enhanced PET quantification in clinical oncology publication-title: Br J Radiol – volume: 9 start-page: 102 issue: 1 year: 2019 article-title: Biodistribution and post‐therapy dosimetric analysis of [(177)Lu]Lu‐DOTA(ZOL) in patients with osteoblastic metastases: first results publication-title: EJNMMI Res – volume: 12 issue: 9 year: 2017 article-title: Deep reconstruction model for dynamic PET images publication-title: PLoS One – volume: 48 start-page: 2405 issue: 8 year: 2021 end-page: 2415 article-title: Deep learning‐assisted ultra‐fast/low‐dose whole‐body PET/CT imaging publication-title: Eur J Nucl Med Mol Imaging – year: 2008 – volume: 46 start-page: 501 issue: 2 year: 2019 end-page: 518 article-title: Dynamic whole‐body PET imaging: principles, potentials and applications publication-title: Eur J Nucl Med Mol Imaging – volume: 2 start-page: 267 issue: 2 year: 2007 end-page: 277 article-title: Tracer kinetic modeling in PET publication-title: PET Clin – volume: 36 start-page: 3654 issue: 8 year: 2009 end-page: 3670 article-title: Four‐dimensional (4D) image reconstruction strategies in dynamic PET: beyond conventional independent frame reconstruction publication-title: Med Phys – volume: 47 start-page: 309 issue: 4 year: 2019 end-page: 312 article-title: Current status of radionuclide renal cortical imaging in Pyelonephritis publication-title: J Nucl Med Technol – volume: 55 start-page: R111 issue: 20 year: 2010 end-page: R191 article-title: Dynamic single photon emission computed tomography—basic principles and cardiac applications publication-title: Phys Med Biol – year: 2017 – volume: 61 start-page: 1388 issue: 9 year: 2020 end-page: 1396 article-title: Projection‐space implementation of deep learning‐guided low‐dose brain PET imaging improves performance over implementation in image‐space publication-title: J Nucl Med – year: 1993 – volume: 21 start-page: 551 year: 2019 end-page: 581 article-title: Human positron emission tomography neuroimaging publication-title: Annu Rev Biomed Eng – volume: 53 start-page: 1897 issue: 12 year: 2012 end-page: 1903 article-title: Compared performance of high‐sensitivity cameras dedicated to myocardial perfusion SPECT: a comprehensive analysis of phantom and human images publication-title: J Nucl Med – volume: 7 start-page: 1119 issue: 11 year: 2014 end-page: 1127 article-title: Quantification of myocardial blood flow in absolute terms using 82Rb PET imaging: the RUBY‐10 study publication-title: JACC Cardiovasc Imaging – year: 2015 – volume: 49 start-page: 47 issue: 1 year: 2019 end-page: 57 article-title: Lung scintigraphy in the assessment of aerosol deposition and clearance publication-title: Semin Nucl Med – year: 2013 – ident: e_1_2_9_42_1 – ident: e_1_2_9_3_1 doi: 10.2967/jnumed.119.227231 – ident: e_1_2_9_22_1 doi: 10.1109/ACCESS.2019.2929230 – ident: e_1_2_9_10_1 doi: 10.2967/jnumed.106.032680 – ident: e_1_2_9_2_1 doi: 10.1146/annurev-bioeng-062117-121056 – ident: e_1_2_9_17_1 doi: 10.2967/jnumed.112.107417 – ident: e_1_2_9_43_1 – ident: e_1_2_9_47_1 – ident: e_1_2_9_11_1 doi: 10.1097/MNM.0b013e3282f3a515 – ident: e_1_2_9_18_1 doi: 10.1016/j.jcmg.2014.08.003 – ident: e_1_2_9_25_1 doi: 10.1016/j.media.2019.04.001 – ident: e_1_2_9_51_1 doi: 10.1016/0169-2607(95)01703-8 – ident: e_1_2_9_16_1 doi: 10.1088/0031-9155/45/12/302 – ident: e_1_2_9_38_1 – ident: e_1_2_9_30_1 doi: 10.1109/NSSMIC.2008.4774271 – ident: e_1_2_9_44_1 – ident: e_1_2_9_46_1 – ident: e_1_2_9_12_1 doi: 10.2967/jnmt.119.227942 – ident: e_1_2_9_13_1 doi: 10.1053/j.semnuclmed.2018.10.015 – ident: e_1_2_9_20_1 doi: 10.1109/42.764885 – ident: e_1_2_9_49_1 – ident: e_1_2_9_33_1 – volume: 45 start-page: 1135 issue: 7 year: 2004 ident: e_1_2_9_50_1 article-title: A technique for standardized central analysis of 6–18F‐fluoro‐L‐DOPA PET data from a multicenter study publication-title: J Nucl Med – ident: e_1_2_9_6_1 doi: 10.2967/jnumed.108.057182 – ident: e_1_2_9_28_1 doi: 10.1007/s002590000312 – ident: e_1_2_9_21_1 doi: 10.1371/journal.pone.0184667 – ident: e_1_2_9_39_1 doi: 10.1109/ICCV.2017.308 – ident: e_1_2_9_9_1 doi: 10.1016/j.cpet.2007.08.003 – ident: e_1_2_9_15_1 doi: 10.1088/0031-9155/55/20/R01 – ident: e_1_2_9_5_1 doi: 10.1007/978-3-540-76735-0 – volume: 32 start-page: 350 issue: 6 year: 2013 ident: e_1_2_9_48_1 article-title: Elaboration of the SPM template for the standardization of SPECT images with 123I‐Ioflupane publication-title: Rev Esp Med Nucl Imagen Mol – ident: e_1_2_9_36_1 – ident: e_1_2_9_7_1 doi: 10.1007/s00259-018-4153-6 – ident: e_1_2_9_37_1 doi: 10.1109/CVPR.2017.230 – ident: e_1_2_9_32_1 – ident: e_1_2_9_27_1 doi: 10.1148/radiol.2018180940 – ident: e_1_2_9_31_1 doi: 10.1016/j.ejmp.2020.11.004 – ident: e_1_2_9_8_1 doi: 10.1118/1.3160108 – ident: e_1_2_9_41_1 doi: 10.1109/CVPR.2018.00165 – ident: e_1_2_9_26_1 doi: 10.2967/jnumed.119.239327 – ident: e_1_2_9_40_1 doi: 10.1145/3126686.3126737 – ident: e_1_2_9_4_1 doi: 10.1259/bjr.20170508 – ident: e_1_2_9_23_1 doi: 10.1007/s00259-020-05167-1 – ident: e_1_2_9_14_1 doi: 10.1186/s13550-019-0566-x – ident: e_1_2_9_29_1 doi: 10.1007/s11307-010-0384-z – ident: e_1_2_9_19_1 doi: 10.1007/s002590050355 – ident: e_1_2_9_34_1 – ident: e_1_2_9_35_1 doi: 10.1109/CVPR.2017.319 – ident: e_1_2_9_24_1 doi: 10.1109/TMI.2019.2927199 – ident: e_1_2_9_45_1 |
SSID | ssj0006350 |
Score | 2.4734359 |
Snippet | Purpose
We assess the performance of a recurrent frame generation algorithm for prediction of late frames from initial frames in dynamic brain PET imaging.... We assess the performance of a recurrent frame generation algorithm for prediction of late frames from initial frames in dynamic brain PET imaging.PURPOSEWe... |
SourceID | pubmedcentral proquest crossref wiley |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5059 |
SubjectTerms | brain imaging deep learning dynamic imaging PET QUANTITATIVE IMAGING AND IMAGE PROCESSING recurrent neural network |
Title | Fast dynamic brain PET imaging using stochastic variational prediction for recurrent frame generation |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmp.15063 https://www.proquest.com/docview/2545596275 https://pubmed.ncbi.nlm.nih.gov/PMC8518550 |
Volume | 48 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFL3oRPFFdCrOjxFB9KluzZK2eRzqGOJk4ATfSpuPKbhurJu_39y0m04UhEIpSRPITXJPkpNzAS5YU4mQS-mlIqUeU1x6QjPjhVwxg3rpTekIso9B95ndv_CXklWJd2EKfYjlhhuODDdf4wBP0rzxJRo6mlyjOl5rHTbwZi3q5lPWX87C1pEW108EwxMEvhCebdLG4s9VV_SFL3-yI7-jVud2OruwU-JF0i4MvAdrOqvCVq88Ea_CpqNwynwfdCfJZ0QVEeZJiqEfSP9uQN5GLhARQYb7kFisJ18TFGcmH3aZXG4FkskUS8QPYlEsmeIuPOo2EYPkLTJ04tSYfADPnbvBTdcrgyh4klko59mGFzppiYRJ2bJWoco6aK59yZvUmChSKbVPEFEdhomMTOCryHAVhSrRShjROoRKNs70ERA7uu3iBiP7Kp-FUqSB7xsLGSIZpYZyVYOrRXvGslQYx0AX73GhjUzj0SR2LV-D82XOSaGq8VuehUli2-XxHCPJ9Hiex3ZNy13QIF6DcMVWy8JQNHs1JXt7deLZFmGihlsNLp1V_6w-7vXd-_i_GU9gmyLfxfHPTqEym871mQUss7TuemYdNtq3vYenT8yv6ro |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwED-m4seL6FScnxFEn-rWLGkbfBJxzI-NPWzgW2nzoYKrY5v-_ebSdjpREAqlJE0gl8v9crn8DuCUNZQIuZReKlLqMcWlJzQzXsgVM8iX3pAuQLYbtAfs7pE_VuCyvAuT80PMHG6oGW69RgVHh3T9izV0OLpAerzmAiyxgIaolZT1ZsuwtaT5_RPB8AiBl8yzDVov_5y3RV8A82d45HfY6uxOawPWC8BIrnIJb0JFZ1VY6RRH4lVYdjGccrIFupVMpkTlKeZJirkfSO-mT16GLhMRwRD3J2LBnnxOkJ2ZfNh9cuELJKMxtogfxMJYMkY3PBI3EYPRW-TJsVNj8TYMWjf967ZXZFHwJLNYzrMjL3TSFAmTsmnFQpW10Fz7kjeoMVGkUmqfIKI6DBMZmcBXkeEqClWilTCiuQOL2Vumd4FY9ba7G0ztq3wWSpEGvm8sZohklBrKVQ3Oy_GMZUExjpkuXuOcHJnGw1HsRr4GJ7Oao5xW47c6pUhiO-fxICPJ9Nv7JLabWu6yBvEahHOymjWGrNnzJdnLs2PPthATSdxqcOak-mf3cafn3nv_rXgMq-1-5yF-uO3e78MaxeAXF4x2AIvT8bs-tOhlmh65WfoJFDrskg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFD7oRPFFdCrOawTRp2qbJWvzKOqYV_ag4Ftpc9kGriu7-PvNSbvNiYJQKCVpCzlJzpecL98BOGO-EiGX0ktFSj2muPSEZsYLuWIG9dJ96QiyL43WG3t45-8lqxLPwhT6ELMNNxwZbr7GAZ4rczUXDe3nl6iOV1-GFRfrQ1Vn1p7NwtaRFsdPBMMIAp8Kz_r0avrmoiua48uf7MjvqNW5neYmbJR4kVwXBt6CJZ1VYe25jIhXYdVROOVoG3QzGY2JKjLMkxRTP5D23Svp9V0iIoIM9w6xWE92ExRnJp92mVxuBZJ8iF_EB2JRLBniLjzqNhGD5C3SceLUWLwDb82715uWVyZR8CSzUM6zDS90UhcJk7JurUKVddBcB5L71JgoUim1VyOiOgwTGZlGoCLDVRSqRCthRH0XKtkg03tA7Oi2ixvM7KsCFkqRNoLAWMgQySg1lKsaXEzbM5alwjgmuviIC21kGvfz2LV8DU5nNfNCVeO3OlOTxLbLYxwjyfRgMortmpa7pEG8BuGCrWYfQ9HsxZKs13Xi2RZhooZbDc6dVf_8ffzcdvf9_1Y8gbX2bTN-un95PIB1itQXR0U7hMp4ONFHFruM02PXSb8AyJ3rxA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+dynamic+brain+PET+imaging+using+stochastic+variational+prediction+for+recurrent+frame+generation&rft.jtitle=Medical+physics+%28Lancaster%29&rft.au=Sanaat%2C+Amirhossein&rft.au=Mirsadeghi%2C+Ehsan&rft.au=Razeghi%2C+Behrooz&rft.au=Ginovart%2C+Nathalie&rft.date=2021-09-01&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=0094-2405&rft.eissn=2473-4209&rft.volume=48&rft.issue=9&rft.spage=5059&rft.epage=5071&rft_id=info:doi/10.1002%2Fmp.15063&rft_id=info%3Apmid%2F34174787&rft.externalDocID=PMC8518550 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-2405&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-2405&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-2405&client=summon |