Fast dynamic brain PET imaging using stochastic variational prediction for recurrent frame generation

Purpose We assess the performance of a recurrent frame generation algorithm for prediction of late frames from initial frames in dynamic brain PET imaging. Methods Clinical dynamic 18F‐DOPA brain PET/CT studies of 46 subjects with ten folds cross‐validation were retrospectively employed. A novel sto...

Full description

Saved in:
Bibliographic Details
Published inMedical physics (Lancaster) Vol. 48; no. 9; pp. 5059 - 5071
Main Authors Sanaat, Amirhossein, Mirsadeghi, Ehsan, Razeghi, Behrooz, Ginovart, Nathalie, Zaidi, Habib
Format Journal Article
LanguageEnglish
Published Hoboken John Wiley and Sons Inc 01.09.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose We assess the performance of a recurrent frame generation algorithm for prediction of late frames from initial frames in dynamic brain PET imaging. Methods Clinical dynamic 18F‐DOPA brain PET/CT studies of 46 subjects with ten folds cross‐validation were retrospectively employed. A novel stochastic adversarial video prediction model was implemented to predict the last 13 frames (25–90 minutes) from the initial 13 frames (0–25 minutes). The quantitative analysis of the predicted dynamic PET frames was performed for the test and validation dataset using established metrics. Results The predicted dynamic images demonstrated that the model is capable of predicting the trend of change in time‐varying tracer biodistribution. The Bland‐Altman plots reported the lowest tracer uptake bias (−0.04) for the putamen region and the smallest variance (95% CI: −0.38, +0.14) for the cerebellum. The region‐wise Patlak graphical analysis in the caudate and putamen regions for eight subjects from the test and validation dataset showed that the average bias for Ki and distribution volume was 4.3%, 5.1% and 4.4%, 4.2%, (P‐value <0.05), respectively. Conclusion We have developed a novel deep learning approach for fast dynamic brain PET imaging capable of generating the last 65 minutes time frames from the initial 25 minutes frames, thus enabling significant reduction in scanning time.
AbstractList Purpose We assess the performance of a recurrent frame generation algorithm for prediction of late frames from initial frames in dynamic brain PET imaging. Methods Clinical dynamic 18F‐DOPA brain PET/CT studies of 46 subjects with ten folds cross‐validation were retrospectively employed. A novel stochastic adversarial video prediction model was implemented to predict the last 13 frames (25–90 minutes) from the initial 13 frames (0–25 minutes). The quantitative analysis of the predicted dynamic PET frames was performed for the test and validation dataset using established metrics. Results The predicted dynamic images demonstrated that the model is capable of predicting the trend of change in time‐varying tracer biodistribution. The Bland‐Altman plots reported the lowest tracer uptake bias (−0.04) for the putamen region and the smallest variance (95% CI: −0.38, +0.14) for the cerebellum. The region‐wise Patlak graphical analysis in the caudate and putamen regions for eight subjects from the test and validation dataset showed that the average bias for Ki and distribution volume was 4.3%, 5.1% and 4.4%, 4.2%, (P‐value <0.05), respectively. Conclusion We have developed a novel deep learning approach for fast dynamic brain PET imaging capable of generating the last 65 minutes time frames from the initial 25 minutes frames, thus enabling significant reduction in scanning time.
We assess the performance of a recurrent frame generation algorithm for prediction of late frames from initial frames in dynamic brain PET imaging.PURPOSEWe assess the performance of a recurrent frame generation algorithm for prediction of late frames from initial frames in dynamic brain PET imaging.Clinical dynamic 18 F-DOPA brain PET/CT studies of 46 subjects with ten folds cross-validation were retrospectively employed. A novel stochastic adversarial video prediction model was implemented to predict the last 13 frames (25-90 minutes) from the initial 13 frames (0-25 minutes). The quantitative analysis of the predicted dynamic PET frames was performed for the test and validation dataset using established metrics.METHODSClinical dynamic 18 F-DOPA brain PET/CT studies of 46 subjects with ten folds cross-validation were retrospectively employed. A novel stochastic adversarial video prediction model was implemented to predict the last 13 frames (25-90 minutes) from the initial 13 frames (0-25 minutes). The quantitative analysis of the predicted dynamic PET frames was performed for the test and validation dataset using established metrics.The predicted dynamic images demonstrated that the model is capable of predicting the trend of change in time-varying tracer biodistribution. The Bland-Altman plots reported the lowest tracer uptake bias (-0.04) for the putamen region and the smallest variance (95% CI: -0.38, +0.14) for the cerebellum. The region-wise Patlak graphical analysis in the caudate and putamen regions for eight subjects from the test and validation dataset showed that the average bias for K i and distribution volume was 4.3%, 5.1% and 4.4%, 4.2%, (P-value <0.05), respectively.RESULTSThe predicted dynamic images demonstrated that the model is capable of predicting the trend of change in time-varying tracer biodistribution. The Bland-Altman plots reported the lowest tracer uptake bias (-0.04) for the putamen region and the smallest variance (95% CI: -0.38, +0.14) for the cerebellum. The region-wise Patlak graphical analysis in the caudate and putamen regions for eight subjects from the test and validation dataset showed that the average bias for K i and distribution volume was 4.3%, 5.1% and 4.4%, 4.2%, (P-value <0.05), respectively.We have developed a novel deep learning approach for fast dynamic brain PET imaging capable of generating the last 65 minutes time frames from the initial 25 minutes frames, thus enabling significant reduction in scanning time.CONCLUSIONWe have developed a novel deep learning approach for fast dynamic brain PET imaging capable of generating the last 65 minutes time frames from the initial 25 minutes frames, thus enabling significant reduction in scanning time.
Author Mirsadeghi, Ehsan
Sanaat, Amirhossein
Zaidi, Habib
Ginovart, Nathalie
Razeghi, Behrooz
AuthorAffiliation 7 Geneva University Neurocenter Geneva University Geneva Switzerland
10 Department of Nuclear Medicine University of Southern Denmark Odense Denmark
6 Department of Basic Neurosciences Geneva University Geneva Switzerland
9 University Medical Center Groningen Netherlands
2 Electrical Engineering Department Amirkabir University of Technology Tehran Iran
5 Department of Psychiatry Geneva University Geneva Switzerland
1 Division of Nuclear Medicine and Molecular Imaging Geneva University Hospital Geneva Switzerland
8 Department of Nuclear Medicine and Molecular Imaging University of Groningen Groningen Netherlands
4 School of Engineering and Applied Sciences Harvard University Boston USA
3 Department of Computer Sciences University of Geneva Geneva Switzerland
AuthorAffiliation_xml – name: 6 Department of Basic Neurosciences Geneva University Geneva Switzerland
– name: 10 Department of Nuclear Medicine University of Southern Denmark Odense Denmark
– name: 7 Geneva University Neurocenter Geneva University Geneva Switzerland
– name: 5 Department of Psychiatry Geneva University Geneva Switzerland
– name: 4 School of Engineering and Applied Sciences Harvard University Boston USA
– name: 8 Department of Nuclear Medicine and Molecular Imaging University of Groningen Groningen Netherlands
– name: 1 Division of Nuclear Medicine and Molecular Imaging Geneva University Hospital Geneva Switzerland
– name: 3 Department of Computer Sciences University of Geneva Geneva Switzerland
– name: 9 University Medical Center Groningen Netherlands
– name: 2 Electrical Engineering Department Amirkabir University of Technology Tehran Iran
Author_xml – sequence: 1
  givenname: Amirhossein
  surname: Sanaat
  fullname: Sanaat, Amirhossein
  organization: Geneva University Hospital
– sequence: 2
  givenname: Ehsan
  surname: Mirsadeghi
  fullname: Mirsadeghi, Ehsan
  organization: Amirkabir University of Technology
– sequence: 3
  givenname: Behrooz
  surname: Razeghi
  fullname: Razeghi, Behrooz
  organization: Harvard University
– sequence: 4
  givenname: Nathalie
  surname: Ginovart
  fullname: Ginovart, Nathalie
  organization: Geneva University
– sequence: 5
  givenname: Habib
  surname: Zaidi
  fullname: Zaidi, Habib
  email: habib.zaidi@hcuge.ch
  organization: University of Southern Denmark
BookMark eNp1kVtrFDEUx4NU7LYKfoQ8-jLbTC6bzIsgpdVCxT6szyGbnGwjM8mYzFT225u9YLEohBMO53f-53aBzmKKgND7lixbQujVMC5bQVbsFVpQLlnDKenO0IKQjjeUE3GOLkr5QUhFBHmDzhlvJZdKLhDcmjJht4tmCBZvsgkRP9yscRjMNsQtnsvelinZxwpW5MnkYKaQounxmMEFu3ewTxlnsHPOECfssxkAbyFCPrBv0Wtv-gLvTv8l-n57s77-0tx_-3x3_em-sVww1gD3HRjWGW4tk8JSpwQT0FpBqPdKuQ2tb6UoSGms8qvWKS-cks6A63zHLtHHo-44bwZwtvaSTa_HXMfJO51M0H9HYnjU2_SklWiVEKQKfDgJ5PRzhjLpIRQLfW8ipLloKrgQ3YpK8YzanErJ4P-UaYneX0UPoz5cpaLLF6gN02ExtYnQ_yuhOSb8Cj3s_iusvz4c-d-VC6DJ
CitedBy_id crossref_primary_10_1002_hbm_26068
crossref_primary_10_1186_s40658_024_00698_0
crossref_primary_10_1007_s12149_021_01710_8
crossref_primary_10_1007_s00259_024_06755_1
crossref_primary_10_1016_j_neuroimage_2021_118697
crossref_primary_10_1088_1361_6560_ac950a
crossref_primary_10_1007_s10278_021_00536_0
crossref_primary_10_1088_1361_6560_ac7fd8
crossref_primary_10_1007_s13139_024_00845_6
crossref_primary_10_1109_TRPMS_2023_3253261
crossref_primary_10_1016_j_phrs_2023_106984
crossref_primary_10_1007_s00259_024_07012_1
Cites_doi 10.2967/jnumed.119.227231
10.1109/ACCESS.2019.2929230
10.2967/jnumed.106.032680
10.1146/annurev-bioeng-062117-121056
10.2967/jnumed.112.107417
10.1097/MNM.0b013e3282f3a515
10.1016/j.jcmg.2014.08.003
10.1016/j.media.2019.04.001
10.1016/0169-2607(95)01703-8
10.1088/0031-9155/45/12/302
10.1109/NSSMIC.2008.4774271
10.2967/jnmt.119.227942
10.1053/j.semnuclmed.2018.10.015
10.1109/42.764885
10.2967/jnumed.108.057182
10.1007/s002590000312
10.1371/journal.pone.0184667
10.1109/ICCV.2017.308
10.1016/j.cpet.2007.08.003
10.1088/0031-9155/55/20/R01
10.1007/978-3-540-76735-0
10.1007/s00259-018-4153-6
10.1109/CVPR.2017.230
10.1148/radiol.2018180940
10.1016/j.ejmp.2020.11.004
10.1118/1.3160108
10.1109/CVPR.2018.00165
10.2967/jnumed.119.239327
10.1145/3126686.3126737
10.1259/bjr.20170508
10.1007/s00259-020-05167-1
10.1186/s13550-019-0566-x
10.1007/s11307-010-0384-z
10.1007/s002590050355
10.1109/CVPR.2017.319
10.1109/TMI.2019.2927199
ContentType Journal Article
Copyright 2021 The Authors. published by Wiley Periodicals LLC on behalf of American Association of Physicists in Medicine
2021 The Authors. Medical Physics published by Wiley Periodicals LLC on behalf of American Association of Physicists in Medicine.
Copyright_xml – notice: 2021 The Authors. published by Wiley Periodicals LLC on behalf of American Association of Physicists in Medicine
– notice: 2021 The Authors. Medical Physics published by Wiley Periodicals LLC on behalf of American Association of Physicists in Medicine.
DBID 24P
AAYXX
CITATION
7X8
5PM
DOI 10.1002/mp.15063
DatabaseName WRHA-Wiley Online Library Open Access
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
DocumentTitleAlternate SANAAT et al
EISSN 2473-4209
EndPage 5071
ExternalDocumentID PMC8518550
10_1002_mp_15063
MP15063
Genre article
GrantInformation_xml – fundername: Swiss National Science Foundation
  funderid: 320030_176052; 31003A_179373
– fundername: ;
  grantid: 320030_176052; 31003A_179373
GroupedDBID ---
--Z
-DZ
.GJ
0R~
1OB
1OC
24P
29M
2WC
33P
36B
3O-
4.4
53G
5GY
5RE
5VS
AAHHS
AAHQN
AAIPD
AAMNL
AANLZ
AAQQT
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABDPE
ABEFU
ABFTF
ABJNI
ABLJU
ABQWH
ABTAH
ABXGK
ACAHQ
ACBEA
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACPOU
ACXBN
ACXQS
ADBBV
ADBTR
ADKYN
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AHBTC
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ASPBG
BFHJK
C45
CS3
DCZOG
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F5P
HDBZQ
HGLYW
I-F
KBYEO
LATKE
LEEKS
LOXES
LUTES
LYRES
MEWTI
O9-
OVD
P2P
P2W
PALCI
PHY
RJQFR
RNS
ROL
SAMSI
SUPJJ
SV3
TEORI
TN5
TWZ
USG
WOHZO
WXSBR
XJT
ZGI
ZVN
ZXP
ZY4
ZZTAW
AAYXX
ADMLS
AEYWJ
AGHNM
AGYGG
CITATION
7X8
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
5PM
ID FETCH-LOGICAL-c4533-e4f9ea39a4cc375c2d8535e1c502ff88db2db2682e77ac8f61d8f5d87daed9f93
IEDL.DBID 24P
ISSN 0094-2405
2473-4209
IngestDate Thu Aug 21 14:32:19 EDT 2025
Thu Jul 10 18:50:13 EDT 2025
Thu Apr 24 23:08:26 EDT 2025
Tue Jul 01 03:54:45 EDT 2025
Wed Jan 22 16:27:57 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License Attribution-NonCommercial-NoDerivs
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4533-e4f9ea39a4cc375c2d8535e1c502ff88db2db2682e77ac8f61d8f5d87daed9f93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmp.15063
PMID 34174787
PQID 2545596275
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8518550
proquest_miscellaneous_2545596275
crossref_primary_10_1002_mp_15063
crossref_citationtrail_10_1002_mp_15063
wiley_primary_10_1002_mp_15063_MP15063
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2021
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: September 2021
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Medical physics (Lancaster)
PublicationYear 2021
Publisher John Wiley and Sons Inc
Publisher_xml – name: John Wiley and Sons Inc
References 2010; 55
2019; 7
2019; 9
2021; 48
2019; 290
2000; 27
2000; 45
2019; 55
2020; 61
1999; 26
2020; 80
2004; 45
2009
2020; 39
2008
2011; 13
1993
2012; 53
2009; 36
2019; 60
2013; 32
2009; 50
1995; 48
2019; 21
1999; 18
2019; 46
2008; 29
2019; 47
2017; 12
2018; 91
2019; 49
2018
2017
2015
2007; 2
2014
2013
2014; 7
2007; 48
e_1_2_9_31_1
e_1_2_9_10_1
e_1_2_9_35_1
García‐Gómez FJ (e_1_2_9_48_1) 2013; 32
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_13_1
e_1_2_9_32_1
Whone AL (e_1_2_9_50_1) 2004; 45
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – year: 2009
– volume: 39
  start-page: 366
  issue: 2
  year: 2020
  end-page: 376
  article-title: Use of a tracer‐specific deep artificial neural net to denoise dynamic PET images
  publication-title: IEEE Trans Med Imaging
– volume: 48
  start-page: 661
  issue: 4
  year: 2007
  end-page: 673
  article-title: Recent advances in SPECT imaging
  publication-title: J Nucl Med
– volume: 55
  start-page: 27
  year: 2019
  end-page: 40
  article-title: Unsupervised tumor detection in Dynamic PET/CT imaging of the prostate
  publication-title: Med Image Anal
– volume: 80
  start-page: 193
  year: 2020
  end-page: 200
  article-title: Short‐duration dynamic FDG PET imaging: optimization and clinical application
  publication-title: Phys Med
– volume: 50
  start-page: 11S
  issue: Suppl 1
  year: 2009
  end-page: 20S
  article-title: Standards for PET image acquisition and quantitative data analysis
  publication-title: J Nucl Med
– volume: 26
  start-page: 22
  issue: 1
  year: 1999
  end-page: 30
  article-title: A PET study of 18FDG uptake in soft tissue masses
  publication-title: Eur J Nucl Med
– volume: 48
  start-page: 257
  issue: 3
  year: 1995
  end-page: 262
  article-title: MedCalc: a new computer program for medical statistics
  publication-title: Comput Methods Programs Biomed
– volume: 32
  start-page: 350
  issue: 6
  year: 2013
  end-page: 356
  article-title: Elaboration of the SPM template for the standardization of SPECT images with 123I‐Ioflupane
  publication-title: Rev Esp Med Nucl Imagen Mol
– volume: 7
  start-page: 96594
  year: 2019
  end-page: 96603
  article-title: Dynamic PET image denoising using deep convolutional neural networks without prior training datasets
  publication-title: IEEE Access
– year: 2018
– year: 2014
– volume: 27
  start-page: 1538
  issue: 10
  year: 2000
  end-page: 1542
  article-title: Short dynamic FDG‐PET imaging protocol for patients with lung cancer
  publication-title: Eur J Nucl Med
– volume: 18
  start-page: 185
  issue: 3
  year: 1999
  end-page: 195
  article-title: Fast spatio‐temporal image reconstruction for dynamic PET
  publication-title: IEEE Trans Med Imaging
– volume: 29
  start-page: 193
  issue: 3
  year: 2008
  end-page: 207
  article-title: PET versus SPECT: strengths, limitations and challenges
  publication-title: Nucl Med Commun
– volume: 45
  start-page: 3525
  issue: 12
  year: 2000
  end-page: 3543
  article-title: Performance of the dynamic single photon emission computed tomography (dSPECT) method for decreasing or increasing activity changes
  publication-title: Phys Med Biol
– volume: 13
  start-page: 754
  issue: 4
  year: 2011
  end-page: 758
  article-title: Shortening the duration of [18 F] FDG PET brain examination for diagnosis of brain glioma
  publication-title: Mol Imaging Biol
– volume: 45
  start-page: 1135
  issue: 7
  year: 2004
  end-page: 1145
  article-title: A technique for standardized central analysis of 6–18F‐fluoro‐L‐DOPA PET data from a multicenter study
  publication-title: J Nucl Med
– volume: 60
  start-page: 1340
  issue: 10
  year: 2019
  end-page: 1346
  article-title: State of the Art PET/MRI: applications and limitations ‐ Summary of the first ISMRM/SNMMI Co‐Provided Workshop on PET/MRI
  publication-title: J Nucl Med
– volume: 290
  start-page: 649
  issue: 3
  year: 2019
  end-page: 656
  article-title: Ultra‐low‐dose (18)F‐Florbetaben amyloid PET imaging using deep learning with multi‐contrast MRI inputs
  publication-title: Radiology
– volume: 91
  start-page: 20170508
  issue: 1081
  year: 2018
  article-title: Towards enhanced PET quantification in clinical oncology
  publication-title: Br J Radiol
– volume: 9
  start-page: 102
  issue: 1
  year: 2019
  article-title: Biodistribution and post‐therapy dosimetric analysis of [(177)Lu]Lu‐DOTA(ZOL) in patients with osteoblastic metastases: first results
  publication-title: EJNMMI Res
– volume: 12
  issue: 9
  year: 2017
  article-title: Deep reconstruction model for dynamic PET images
  publication-title: PLoS One
– volume: 48
  start-page: 2405
  issue: 8
  year: 2021
  end-page: 2415
  article-title: Deep learning‐assisted ultra‐fast/low‐dose whole‐body PET/CT imaging
  publication-title: Eur J Nucl Med Mol Imaging
– year: 2008
– volume: 46
  start-page: 501
  issue: 2
  year: 2019
  end-page: 518
  article-title: Dynamic whole‐body PET imaging: principles, potentials and applications
  publication-title: Eur J Nucl Med Mol Imaging
– volume: 2
  start-page: 267
  issue: 2
  year: 2007
  end-page: 277
  article-title: Tracer kinetic modeling in PET
  publication-title: PET Clin
– volume: 36
  start-page: 3654
  issue: 8
  year: 2009
  end-page: 3670
  article-title: Four‐dimensional (4D) image reconstruction strategies in dynamic PET: beyond conventional independent frame reconstruction
  publication-title: Med Phys
– volume: 47
  start-page: 309
  issue: 4
  year: 2019
  end-page: 312
  article-title: Current status of radionuclide renal cortical imaging in Pyelonephritis
  publication-title: J Nucl Med Technol
– volume: 55
  start-page: R111
  issue: 20
  year: 2010
  end-page: R191
  article-title: Dynamic single photon emission computed tomography—basic principles and cardiac applications
  publication-title: Phys Med Biol
– year: 2017
– volume: 61
  start-page: 1388
  issue: 9
  year: 2020
  end-page: 1396
  article-title: Projection‐space implementation of deep learning‐guided low‐dose brain PET imaging improves performance over implementation in image‐space
  publication-title: J Nucl Med
– year: 1993
– volume: 21
  start-page: 551
  year: 2019
  end-page: 581
  article-title: Human positron emission tomography neuroimaging
  publication-title: Annu Rev Biomed Eng
– volume: 53
  start-page: 1897
  issue: 12
  year: 2012
  end-page: 1903
  article-title: Compared performance of high‐sensitivity cameras dedicated to myocardial perfusion SPECT: a comprehensive analysis of phantom and human images
  publication-title: J Nucl Med
– volume: 7
  start-page: 1119
  issue: 11
  year: 2014
  end-page: 1127
  article-title: Quantification of myocardial blood flow in absolute terms using 82Rb PET imaging: the RUBY‐10 study
  publication-title: JACC Cardiovasc Imaging
– year: 2015
– volume: 49
  start-page: 47
  issue: 1
  year: 2019
  end-page: 57
  article-title: Lung scintigraphy in the assessment of aerosol deposition and clearance
  publication-title: Semin Nucl Med
– year: 2013
– ident: e_1_2_9_42_1
– ident: e_1_2_9_3_1
  doi: 10.2967/jnumed.119.227231
– ident: e_1_2_9_22_1
  doi: 10.1109/ACCESS.2019.2929230
– ident: e_1_2_9_10_1
  doi: 10.2967/jnumed.106.032680
– ident: e_1_2_9_2_1
  doi: 10.1146/annurev-bioeng-062117-121056
– ident: e_1_2_9_17_1
  doi: 10.2967/jnumed.112.107417
– ident: e_1_2_9_43_1
– ident: e_1_2_9_47_1
– ident: e_1_2_9_11_1
  doi: 10.1097/MNM.0b013e3282f3a515
– ident: e_1_2_9_18_1
  doi: 10.1016/j.jcmg.2014.08.003
– ident: e_1_2_9_25_1
  doi: 10.1016/j.media.2019.04.001
– ident: e_1_2_9_51_1
  doi: 10.1016/0169-2607(95)01703-8
– ident: e_1_2_9_16_1
  doi: 10.1088/0031-9155/45/12/302
– ident: e_1_2_9_38_1
– ident: e_1_2_9_30_1
  doi: 10.1109/NSSMIC.2008.4774271
– ident: e_1_2_9_44_1
– ident: e_1_2_9_46_1
– ident: e_1_2_9_12_1
  doi: 10.2967/jnmt.119.227942
– ident: e_1_2_9_13_1
  doi: 10.1053/j.semnuclmed.2018.10.015
– ident: e_1_2_9_20_1
  doi: 10.1109/42.764885
– ident: e_1_2_9_49_1
– ident: e_1_2_9_33_1
– volume: 45
  start-page: 1135
  issue: 7
  year: 2004
  ident: e_1_2_9_50_1
  article-title: A technique for standardized central analysis of 6–18F‐fluoro‐L‐DOPA PET data from a multicenter study
  publication-title: J Nucl Med
– ident: e_1_2_9_6_1
  doi: 10.2967/jnumed.108.057182
– ident: e_1_2_9_28_1
  doi: 10.1007/s002590000312
– ident: e_1_2_9_21_1
  doi: 10.1371/journal.pone.0184667
– ident: e_1_2_9_39_1
  doi: 10.1109/ICCV.2017.308
– ident: e_1_2_9_9_1
  doi: 10.1016/j.cpet.2007.08.003
– ident: e_1_2_9_15_1
  doi: 10.1088/0031-9155/55/20/R01
– ident: e_1_2_9_5_1
  doi: 10.1007/978-3-540-76735-0
– volume: 32
  start-page: 350
  issue: 6
  year: 2013
  ident: e_1_2_9_48_1
  article-title: Elaboration of the SPM template for the standardization of SPECT images with 123I‐Ioflupane
  publication-title: Rev Esp Med Nucl Imagen Mol
– ident: e_1_2_9_36_1
– ident: e_1_2_9_7_1
  doi: 10.1007/s00259-018-4153-6
– ident: e_1_2_9_37_1
  doi: 10.1109/CVPR.2017.230
– ident: e_1_2_9_32_1
– ident: e_1_2_9_27_1
  doi: 10.1148/radiol.2018180940
– ident: e_1_2_9_31_1
  doi: 10.1016/j.ejmp.2020.11.004
– ident: e_1_2_9_8_1
  doi: 10.1118/1.3160108
– ident: e_1_2_9_41_1
  doi: 10.1109/CVPR.2018.00165
– ident: e_1_2_9_26_1
  doi: 10.2967/jnumed.119.239327
– ident: e_1_2_9_40_1
  doi: 10.1145/3126686.3126737
– ident: e_1_2_9_4_1
  doi: 10.1259/bjr.20170508
– ident: e_1_2_9_23_1
  doi: 10.1007/s00259-020-05167-1
– ident: e_1_2_9_14_1
  doi: 10.1186/s13550-019-0566-x
– ident: e_1_2_9_29_1
  doi: 10.1007/s11307-010-0384-z
– ident: e_1_2_9_19_1
  doi: 10.1007/s002590050355
– ident: e_1_2_9_34_1
– ident: e_1_2_9_35_1
  doi: 10.1109/CVPR.2017.319
– ident: e_1_2_9_24_1
  doi: 10.1109/TMI.2019.2927199
– ident: e_1_2_9_45_1
SSID ssj0006350
Score 2.4734359
Snippet Purpose We assess the performance of a recurrent frame generation algorithm for prediction of late frames from initial frames in dynamic brain PET imaging....
We assess the performance of a recurrent frame generation algorithm for prediction of late frames from initial frames in dynamic brain PET imaging.PURPOSEWe...
SourceID pubmedcentral
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5059
SubjectTerms brain imaging
deep learning
dynamic imaging
PET
QUANTITATIVE IMAGING AND IMAGE PROCESSING
recurrent neural network
Title Fast dynamic brain PET imaging using stochastic variational prediction for recurrent frame generation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmp.15063
https://www.proquest.com/docview/2545596275
https://pubmed.ncbi.nlm.nih.gov/PMC8518550
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFL3oRPFFdCrOjxFB9KluzZK2eRzqGOJk4ATfSpuPKbhurJu_39y0m04UhEIpSRPITXJPkpNzAS5YU4mQS-mlIqUeU1x6QjPjhVwxg3rpTekIso9B95ndv_CXklWJd2EKfYjlhhuODDdf4wBP0rzxJRo6mlyjOl5rHTbwZi3q5lPWX87C1pEW108EwxMEvhCebdLG4s9VV_SFL3-yI7-jVud2OruwU-JF0i4MvAdrOqvCVq88Ea_CpqNwynwfdCfJZ0QVEeZJiqEfSP9uQN5GLhARQYb7kFisJ18TFGcmH3aZXG4FkskUS8QPYlEsmeIuPOo2EYPkLTJ04tSYfADPnbvBTdcrgyh4klko59mGFzppiYRJ2bJWoco6aK59yZvUmChSKbVPEFEdhomMTOCryHAVhSrRShjROoRKNs70ERA7uu3iBiP7Kp-FUqSB7xsLGSIZpYZyVYOrRXvGslQYx0AX73GhjUzj0SR2LV-D82XOSaGq8VuehUli2-XxHCPJ9Hiex3ZNy13QIF6DcMVWy8JQNHs1JXt7deLZFmGihlsNLp1V_6w-7vXd-_i_GU9gmyLfxfHPTqEym871mQUss7TuemYdNtq3vYenT8yv6ro
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwED-m4seL6FScnxFEn-rWLGkbfBJxzI-NPWzgW2nzoYKrY5v-_ebSdjpREAqlJE0gl8v9crn8DuCUNZQIuZReKlLqMcWlJzQzXsgVM8iX3pAuQLYbtAfs7pE_VuCyvAuT80PMHG6oGW69RgVHh3T9izV0OLpAerzmAiyxgIaolZT1ZsuwtaT5_RPB8AiBl8yzDVov_5y3RV8A82d45HfY6uxOawPWC8BIrnIJb0JFZ1VY6RRH4lVYdjGccrIFupVMpkTlKeZJirkfSO-mT16GLhMRwRD3J2LBnnxOkJ2ZfNh9cuELJKMxtogfxMJYMkY3PBI3EYPRW-TJsVNj8TYMWjf967ZXZFHwJLNYzrMjL3TSFAmTsmnFQpW10Fz7kjeoMVGkUmqfIKI6DBMZmcBXkeEqClWilTCiuQOL2Vumd4FY9ba7G0ztq3wWSpEGvm8sZohklBrKVQ3Oy_GMZUExjpkuXuOcHJnGw1HsRr4GJ7Oao5xW47c6pUhiO-fxICPJ9Nv7JLabWu6yBvEahHOymjWGrNnzJdnLs2PPthATSdxqcOak-mf3cafn3nv_rXgMq-1-5yF-uO3e78MaxeAXF4x2AIvT8bs-tOhlmh65WfoJFDrskg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFD7oRPFFdCrOawTRp2qbJWvzKOqYV_ag4Ftpc9kGriu7-PvNSbvNiYJQKCVpCzlJzpecL98BOGO-EiGX0ktFSj2muPSEZsYLuWIG9dJ96QiyL43WG3t45-8lqxLPwhT6ELMNNxwZbr7GAZ4rczUXDe3nl6iOV1-GFRfrQ1Vn1p7NwtaRFsdPBMMIAp8Kz_r0avrmoiua48uf7MjvqNW5neYmbJR4kVwXBt6CJZ1VYe25jIhXYdVROOVoG3QzGY2JKjLMkxRTP5D23Svp9V0iIoIM9w6xWE92ExRnJp92mVxuBZJ8iF_EB2JRLBniLjzqNhGD5C3SceLUWLwDb82715uWVyZR8CSzUM6zDS90UhcJk7JurUKVddBcB5L71JgoUim1VyOiOgwTGZlGoCLDVRSqRCthRH0XKtkg03tA7Oi2ixvM7KsCFkqRNoLAWMgQySg1lKsaXEzbM5alwjgmuviIC21kGvfz2LV8DU5nNfNCVeO3OlOTxLbLYxwjyfRgMortmpa7pEG8BuGCrWYfQ9HsxZKs13Xi2RZhooZbDc6dVf_8ffzcdvf9_1Y8gbX2bTN-un95PIB1itQXR0U7hMp4ONFHFruM02PXSb8AyJ3rxA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+dynamic+brain+PET+imaging+using+stochastic+variational+prediction+for+recurrent+frame+generation&rft.jtitle=Medical+physics+%28Lancaster%29&rft.au=Sanaat%2C+Amirhossein&rft.au=Mirsadeghi%2C+Ehsan&rft.au=Razeghi%2C+Behrooz&rft.au=Ginovart%2C+Nathalie&rft.date=2021-09-01&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=0094-2405&rft.eissn=2473-4209&rft.volume=48&rft.issue=9&rft.spage=5059&rft.epage=5071&rft_id=info:doi/10.1002%2Fmp.15063&rft_id=info%3Apmid%2F34174787&rft.externalDocID=PMC8518550
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-2405&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-2405&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-2405&client=summon