Fast dynamic brain PET imaging using stochastic variational prediction for recurrent frame generation

Purpose We assess the performance of a recurrent frame generation algorithm for prediction of late frames from initial frames in dynamic brain PET imaging. Methods Clinical dynamic 18F‐DOPA brain PET/CT studies of 46 subjects with ten folds cross‐validation were retrospectively employed. A novel sto...

Full description

Saved in:
Bibliographic Details
Published inMedical physics (Lancaster) Vol. 48; no. 9; pp. 5059 - 5071
Main Authors Sanaat, Amirhossein, Mirsadeghi, Ehsan, Razeghi, Behrooz, Ginovart, Nathalie, Zaidi, Habib
Format Journal Article
LanguageEnglish
Published Hoboken John Wiley and Sons Inc 01.09.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Purpose We assess the performance of a recurrent frame generation algorithm for prediction of late frames from initial frames in dynamic brain PET imaging. Methods Clinical dynamic 18F‐DOPA brain PET/CT studies of 46 subjects with ten folds cross‐validation were retrospectively employed. A novel stochastic adversarial video prediction model was implemented to predict the last 13 frames (25–90 minutes) from the initial 13 frames (0–25 minutes). The quantitative analysis of the predicted dynamic PET frames was performed for the test and validation dataset using established metrics. Results The predicted dynamic images demonstrated that the model is capable of predicting the trend of change in time‐varying tracer biodistribution. The Bland‐Altman plots reported the lowest tracer uptake bias (−0.04) for the putamen region and the smallest variance (95% CI: −0.38, +0.14) for the cerebellum. The region‐wise Patlak graphical analysis in the caudate and putamen regions for eight subjects from the test and validation dataset showed that the average bias for Ki and distribution volume was 4.3%, 5.1% and 4.4%, 4.2%, (P‐value <0.05), respectively. Conclusion We have developed a novel deep learning approach for fast dynamic brain PET imaging capable of generating the last 65 minutes time frames from the initial 25 minutes frames, thus enabling significant reduction in scanning time.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0094-2405
2473-4209
2473-4209
DOI:10.1002/mp.15063