Multifaceted regulation of sirtuin 2 (Sirt2) deacetylase activity

Sirtuin 2 (Sirt2) is a member of the sirtuin family of NAD-dependent lysine deacylases and plays important roles in regulation of the cell cycle and gene expression. As a nucleocytoplasmic deacetylase, Sirt2 has been shown to target both histone and nonhistone acetylated protein substrates. The cent...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 300; no. 9; p. 107722
Main Authors Abeywardana, Maheeshi Yapa, Whedon, Samuel D., Lee, Kwangwoon, Nam, Eunju, Dovarganes, Rafael, DuBois-Coyne, Sarah, Haque, Ishraq A., Wang, Zhipeng A., Cole, Philip A.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.09.2024
American Society for Biochemistry and Molecular Biology
Subjects
Online AccessGet full text
ISSN0021-9258
1083-351X
1083-351X
DOI10.1016/j.jbc.2024.107722

Cover

Loading…
More Information
Summary:Sirtuin 2 (Sirt2) is a member of the sirtuin family of NAD-dependent lysine deacylases and plays important roles in regulation of the cell cycle and gene expression. As a nucleocytoplasmic deacetylase, Sirt2 has been shown to target both histone and nonhistone acetylated protein substrates. The central catalytic domain of Sirt2 is flanked by flexible N and C termini, which vary in length and composition with alternative splicing. These termini are further subject to posttranslational modifications including phosphorylation. Here, we investigate the function of the N and C termini on deacetylation of nuclear substrates by Sirt2. Remarkably, we find that the C terminus autoinhibits deacetylation, while the N terminus enhances deacetylation of proteins and peptides, but not nucleosomes—a chromatin model substrate. Using protein semisynthesis, we characterize the effect of cell cycle-linked N-terminal phosphorylation at two major phosphorylation sites (Ser23/Ser25) and find that these further enhance protein/peptide deacetylation, with no effect on nucleosome deacetylation. Additionally, we find that VRK1, an established binding partner of both Sirt2 and nucleosomes, can stimulate deacetylation of nucleosomes by Sirt2, likely through an electrostatic mechanism. Taken together, these findings reveal multiple mechanisms regulating the activity of Sirt2, which allow for a broad range of activities across its multiple biological roles.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-9258
1083-351X
1083-351X
DOI:10.1016/j.jbc.2024.107722