Improving plant C-to-G base editors with a cold-adapted glycosylase and TadA-8e variants

A cod uracil DNA glycosylase from the cold-adapted organism Gadus morhua enhanced cytosine (C)-to-guanine (G) base editor (CGBE) activities in rice.TadA-8e-derived cytidine deaminase (TadA-CDc) variants enabled rice C-to-G conversions.CDc-CGBEco achieved highly efficient C-to-G editing in rice, soyb...

Full description

Saved in:
Bibliographic Details
Published inTrends in biotechnology (Regular ed.) Vol. 43; no. 7; pp. 1765 - 1787
Main Authors Jiang, Yingli, Xiao, Zhi, Luo, Zhaopeng, Zhou, Suhuai, Tong, Chaoyun, Jin, Shan, Liu, Xiaoshuang, Qin, Ruiying, Xu, Rongfang, Pan, Lang, Li, Juan, Wei, Pengcheng
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.07.2025
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0167-7799
1879-3096
1879-3096
DOI10.1016/j.tibtech.2025.03.001

Cover

Abstract A cod uracil DNA glycosylase from the cold-adapted organism Gadus morhua enhanced cytosine (C)-to-guanine (G) base editor (CGBE) activities in rice.TadA-8e-derived cytidine deaminase (TadA-CDc) variants enabled rice C-to-G conversions.CDc-CGBEco achieved highly efficient C-to-G editing in rice, soybean, and tobacco.No significant off-target effects of the base editors derived from TadA-CDc were detected in rice. Plant cytosine (C)-to-guanine (G) base editors (CGBEs) have been established but suffer from limited editing efficiencies and low outcome purities. This study engineered a cod uracil DNA glycosylase (cod UNG, coUNG) from the cold-adapted fish Gadus morhua for plant CGBE, demonstrating 1.71- to 2.54-fold increases in C-to-G editing efficiency compared with the CGBE using human UNG (hUNG). Further engineering took advantage of TadA-8e-derived cytidine deaminases (TadA-CDs). These variants induced C substitutions with efficiencies ranging from 26.28% to 30.82% in rice cells, whereas adenine (A) conversion was negligible. By integrating coUNG and TadA-CDc elements with SpCas9 nickase, the resulting CDc-CGBEco achieved pure C-to-G editing without byproducts in up to 52.08% of transgenic lines. Whole-genome sequencing (WGS) analysis revealed no significant off-target effects of the CDc-BEs in rice. In addition, CDc-CGBEco enabled precise C-to-G editing in soybean and tobacco. These engineered CGBEs enhanced editing efficiency, purity, and specificity, suggesting their broad potential for applications in scientific research and crop breeding. [Display omitted] CDc-CGBEco introduced in this study is currently at a Technology Readiness Level (TRL) of 5. Using CDc-CGBEco, we obtained C-to-G-edited T0 rice plants with improved agronomic traits, such as herbicide resistance; we also found germline transmission of pure C-to-G edits in T1 offspring in the field. However, several challenges remain. For instance, limited editing activity in tobacco suggests that the universal applicability of CDc-CGBEco needs to be enhanced. In addition, although whole-genome sequencing was conducted to assess off-target effects, more long-term monitoring and diverse condition evaluations are necessary to comprehensively verify the safety and stability of this technology. A series of uracil DNA glycosylases (UNG) and cytidine deaminases were screened for upgrading plant cytosine (C)-to-guanine (G) base editors (CGBE). An engineered CDc-CGBEco fusing with a cod UNG (coUNG) and a TadA-8e-derived cytidine deaminases (TadA-CDc) exhibited superior performance in C-to-G editing, showing reliable and heritable base editing in monocots and dicots.
AbstractList Plant cytosine (C)-to-guanine (G) base editors (CGBEs) have been established but suffer from limited editing efficiencies and low outcome purities. This study engineered a cod uracil DNA glycosylase (cod UNG, coUNG) from the cold-adapted fish Gadus morhua for plant CGBE, demonstrating 1.71- to 2.54-fold increases in C-to-G editing efficiency compared with the CGBE using human UNG (hUNG). Further engineering took advantage of TadA-8e-derived cytidine deaminases (TadA-CDs). These variants induced C substitutions with efficiencies ranging from 26.28% to 30.82% in rice cells, whereas adenine (A) conversion was negligible. By integrating coUNG and TadA-CDc elements with SpCas9 nickase, the resulting CDc-CGBEco achieved pure C-to-G editing without byproducts in up to 52.08% of transgenic lines. Whole-genome sequencing (WGS) analysis revealed no significant off-target effects of the CDc-BEs in rice. In addition, CDc-CGBEco enabled precise C-to-G editing in soybean and tobacco. These engineered CGBEs enhanced editing efficiency, purity, and specificity, suggesting their broad potential for applications in scientific research and crop breeding.
A cod uracil DNA glycosylase from the cold-adapted organism Gadus morhua enhanced cytosine (C)-to-guanine (G) base editor (CGBE) activities in rice.TadA-8e-derived cytidine deaminase (TadA-CDc) variants enabled rice C-to-G conversions.CDc-CGBEco achieved highly efficient C-to-G editing in rice, soybean, and tobacco.No significant off-target effects of the base editors derived from TadA-CDc were detected in rice. Plant cytosine (C)-to-guanine (G) base editors (CGBEs) have been established but suffer from limited editing efficiencies and low outcome purities. This study engineered a cod uracil DNA glycosylase (cod UNG, coUNG) from the cold-adapted fish Gadus morhua for plant CGBE, demonstrating 1.71- to 2.54-fold increases in C-to-G editing efficiency compared with the CGBE using human UNG (hUNG). Further engineering took advantage of TadA-8e-derived cytidine deaminases (TadA-CDs). These variants induced C substitutions with efficiencies ranging from 26.28% to 30.82% in rice cells, whereas adenine (A) conversion was negligible. By integrating coUNG and TadA-CDc elements with SpCas9 nickase, the resulting CDc-CGBEco achieved pure C-to-G editing without byproducts in up to 52.08% of transgenic lines. Whole-genome sequencing (WGS) analysis revealed no significant off-target effects of the CDc-BEs in rice. In addition, CDc-CGBEco enabled precise C-to-G editing in soybean and tobacco. These engineered CGBEs enhanced editing efficiency, purity, and specificity, suggesting their broad potential for applications in scientific research and crop breeding. [Display omitted] CDc-CGBEco introduced in this study is currently at a Technology Readiness Level (TRL) of 5. Using CDc-CGBEco, we obtained C-to-G-edited T0 rice plants with improved agronomic traits, such as herbicide resistance; we also found germline transmission of pure C-to-G edits in T1 offspring in the field. However, several challenges remain. For instance, limited editing activity in tobacco suggests that the universal applicability of CDc-CGBEco needs to be enhanced. In addition, although whole-genome sequencing was conducted to assess off-target effects, more long-term monitoring and diverse condition evaluations are necessary to comprehensively verify the safety and stability of this technology. A series of uracil DNA glycosylases (UNG) and cytidine deaminases were screened for upgrading plant cytosine (C)-to-guanine (G) base editors (CGBE). An engineered CDc-CGBEco fusing with a cod UNG (coUNG) and a TadA-8e-derived cytidine deaminases (TadA-CDc) exhibited superior performance in C-to-G editing, showing reliable and heritable base editing in monocots and dicots.
Plant cytosine (C)-to-guanine (G) base editors (CGBEs) have been established but suffer from limited editing efficiencies and low outcome purities. This study engineered a cod uracil DNA glycosylase (cod UNG, coUNG) from the cold-adapted fish Gadus morhua for plant CGBE, demonstrating 1.71- to 2.54-fold increases in C-to-G editing efficiency compared with the CGBE using human UNG (hUNG). Further engineering took advantage of TadA-8e-derived cytidine deaminases (TadA-CDs). These variants induced C substitutions with efficiencies ranging from 26.28% to 30.82% in rice cells, whereas adenine (A) conversion was negligible. By integrating coUNG and TadA-CDc elements with SpCas9 nickase, the resulting CDc-CGBEco achieved pure C-to-G editing without byproducts in up to 52.08% of transgenic lines. Whole-genome sequencing (WGS) analysis revealed no significant off-target effects of the CDc-BEs in rice. In addition, CDc-CGBEco enabled precise C-to-G editing in soybean and tobacco. These engineered CGBEs enhanced editing efficiency, purity, and specificity, suggesting their broad potential for applications in scientific research and crop breeding.Plant cytosine (C)-to-guanine (G) base editors (CGBEs) have been established but suffer from limited editing efficiencies and low outcome purities. This study engineered a cod uracil DNA glycosylase (cod UNG, coUNG) from the cold-adapted fish Gadus morhua for plant CGBE, demonstrating 1.71- to 2.54-fold increases in C-to-G editing efficiency compared with the CGBE using human UNG (hUNG). Further engineering took advantage of TadA-8e-derived cytidine deaminases (TadA-CDs). These variants induced C substitutions with efficiencies ranging from 26.28% to 30.82% in rice cells, whereas adenine (A) conversion was negligible. By integrating coUNG and TadA-CDc elements with SpCas9 nickase, the resulting CDc-CGBEco achieved pure C-to-G editing without byproducts in up to 52.08% of transgenic lines. Whole-genome sequencing (WGS) analysis revealed no significant off-target effects of the CDc-BEs in rice. In addition, CDc-CGBEco enabled precise C-to-G editing in soybean and tobacco. These engineered CGBEs enhanced editing efficiency, purity, and specificity, suggesting their broad potential for applications in scientific research and crop breeding.
HighlightsA cod uracil DNA glycosylase from the cold-adapted organism Gadus morhua enhanced cytosine (C)-to-guanine (G) base editor (CGBE) activities in rice. TadA-8e-derived cytidine deaminase (TadA-CDc) variants enabled rice C-to-G conversions. CDc-CGBEco achieved highly efficient C-to-G editing in rice, soybean, and tobacco. No significant off-target effects of the base editors derived from TadA-CDc were detected in rice.
Author Luo, Zhaopeng
Pan, Lang
Xu, Rongfang
Jiang, Yingli
Tong, Chaoyun
Wei, Pengcheng
Zhou, Suhuai
Jin, Shan
Qin, Ruiying
Liu, Xiaoshuang
Li, Juan
Xiao, Zhi
Author_xml – sequence: 1
  givenname: Yingli
  surname: Jiang
  fullname: Jiang, Yingli
  organization: College of Agronomy, Anhui Agricultural University, Hefei, 230036, PR China
– sequence: 2
  givenname: Zhi
  surname: Xiao
  fullname: Xiao, Zhi
  organization: College of Agronomy, Anhui Agricultural University, Hefei, 230036, PR China
– sequence: 3
  givenname: Zhaopeng
  surname: Luo
  fullname: Luo, Zhaopeng
  organization: China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, PR China
– sequence: 4
  givenname: Suhuai
  surname: Zhou
  fullname: Zhou, Suhuai
  organization: College of Agronomy, Anhui Agricultural University, Hefei, 230036, PR China
– sequence: 5
  givenname: Chaoyun
  surname: Tong
  fullname: Tong, Chaoyun
  organization: College of Agronomy, Anhui Agricultural University, Hefei, 230036, PR China
– sequence: 6
  givenname: Shan
  surname: Jin
  fullname: Jin, Shan
  organization: College of Agronomy, Anhui Agricultural University, Hefei, 230036, PR China
– sequence: 7
  givenname: Xiaoshuang
  surname: Liu
  fullname: Liu, Xiaoshuang
  organization: College of Agronomy, Anhui Agricultural University, Hefei, 230036, PR China
– sequence: 8
  givenname: Ruiying
  surname: Qin
  fullname: Qin, Ruiying
  organization: Anhui Province Key Laboratory of Rice Germplasm Innovation and Molecular Improvement, Anhui Academy of Agricultural Sciences, Hefei, 230031, PR China
– sequence: 9
  givenname: Rongfang
  surname: Xu
  fullname: Xu, Rongfang
  organization: Anhui Province Key Laboratory of Rice Germplasm Innovation and Molecular Improvement, Anhui Academy of Agricultural Sciences, Hefei, 230031, PR China
– sequence: 10
  givenname: Lang
  surname: Pan
  fullname: Pan, Lang
  organization: College of Plant Protection, Hunan Agricultural University, Changsha, 410128, PR China
– sequence: 11
  givenname: Juan
  surname: Li
  fullname: Li, Juan
  email: lijuan@aaas.org.cn
  organization: Anhui Province Key Laboratory of Rice Germplasm Innovation and Molecular Improvement, Anhui Academy of Agricultural Sciences, Hefei, 230031, PR China
– sequence: 12
  givenname: Pengcheng
  orcidid: 0000-0001-5403-9451
  surname: Wei
  fullname: Wei, Pengcheng
  email: weipengcheng@gmail.com
  organization: College of Agronomy, Anhui Agricultural University, Hefei, 230036, PR China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40187931$$D View this record in MEDLINE/PubMed
BookMark eNqNkcFu1DAQhi1URLeFRwBZ4sIlwWPHcXIAVK3aUqkSB4rEzXKcSeslGy-2d9G-PY526aESgtNcvvk1_3xn5GTyExLyGlgJDOr3qzK5LqF9KDnjsmSiZAyekQU0qi0Ea-sTssicKpRq21NyFuOKMSZUCy_IacVmTMCCfL9Zb4LfuemebkYzJboski-uaWciUuxd8iHSXy49UEOtH_vC9GaTsKf34976uB9nzkw9vTP9RdEg3Zngck58SZ4PZoz46jjPybery7vl5-L2y_XN8uK2sJXkqRh4ZQT0fDCC1QOA6oQFwZvaCokz0gF0VdM1SrRKmhp4K5WQrKukYQMwcU7eHXJzjZ9bjEmvXbQ45jLot1ELaGrVSACR0bdP0JXfhilfpwXndS05lzP15khtuzX2ehPc2oS9_vOzDMgDYIOPMeDwiADTsxu90kc3enajmdDZTd77dNjD_I6dw6CjdTjZ_OWANuneu38mfHySYEc3OWvGH7jH-NgGdOSa6a-z_1k_l1l9U88BH_4e8B8H_AZseb_Y
Cites_doi 10.3390/ijms23147990
10.1101/gr.107524.110
10.1016/j.molp.2020.12.017
10.1038/s41467-023-38193-2
10.1016/j.molcel.2024.01.021
10.1093/nar/gkv854
10.1038/s41587-020-0561-9
10.1007/s11427-022-2147-2
10.1186/s13765-023-00775-5
10.3389/fgeed.2021.756766
10.1016/j.molp.2020.11.001
10.1093/nar/gks918
10.1038/s41587-019-0032-3
10.1038/s41587-022-01533-6
10.1038/s41467-024-49473-w
10.1002/advs.202202957
10.1038/s41587-020-0592-2
10.1111/pbi.13841
10.1111/pbi.13239
10.1016/j.xplc.2020.100135
10.1089/crispr.2021.0124
10.1093/hr/uhad155
10.1038/s41592-018-0051-x
10.1016/j.cj.2019.04.007
10.1007/s007920100225
10.1186/s13059-024-03282-y
10.1038/nature17946
10.1126/science.aaw7166
10.1016/j.molp.2024.02.010
10.1038/s41467-024-49343-5
10.1016/j.ymthe.2022.03.023
10.1007/s11427-018-9402-9
10.1186/s13059-022-02730-x
10.1038/s41587-023-02050-w
10.1111/pbi.14583
10.1016/j.cj.2023.03.002
10.1038/s41477-021-00991-1
10.1016/j.celrep.2022.111090
10.1038/s41587-022-01595-6
10.1016/j.xplc.2024.100926
10.1016/j.cell.2023.05.041
10.1093/bioinformatics/btu048
10.1038/s41576-024-00720-2
10.1101/pdb.prot5177
10.1111/pbi.13635
10.1038/s41467-021-21559-9
10.1038/s41587-020-0609-x
10.1038/s41467-021-25217-y
10.1111/tpj.13782
10.1038/s41596-020-00423-y
10.1186/s12870-014-0327-y
10.1016/S0305-0491(00)00271-6
10.1093/nsr/nwad143
10.1038/s41587-021-00938-z
10.1186/s12915-019-0629-5
10.1093/bioinformatics/btp324
10.1038/s41587-022-01532-7
10.1111/jipb.13425
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Elsevier Ltd
Copyright © 2025 Elsevier Ltd. All rights reserved.
2025. Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2025 Elsevier Ltd. All rights reserved.
– notice: 2025. Elsevier Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7X7
7XB
88C
88E
8AO
8BQ
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H8D
H8G
HCIFZ
JG9
JQ2
K9.
KR7
L6V
L7M
LK8
L~C
L~D
M0S
M0T
M1P
M2O
M7P
M7S
MBDVC
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
7X8
DOI 10.1016/j.tibtech.2025.03.001
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Healthcare Administration Database (Alumni)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Health & Medical Collection (Alumni)
Healthcare Administration Database
Proquest Medical Database
Research Library
Biological Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Research Library Prep
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Engineered Materials Abstracts
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Ceramic Abstracts
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Health Management (Alumni Edition)
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Central Basic
ProQuest Health Management
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
Corrosion Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1879-3096
EndPage 1787
ExternalDocumentID 40187931
10_1016_j_tibtech_2025_03_001
S0167779925000861
1_s2_0_S0167779925000861
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.1-
.DC
.FO
.~1
0R~
123
1B1
1P~
1RT
1~.
1~5
29Q
4.4
457
4G.
53G
5VS
7-5
71M
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAHBH
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAMRU
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABDPE
ABFNM
ABFRF
ABGSF
ABJCF
ABJNI
ABLJU
ABMAC
ABNUV
ABUDA
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIWK
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
ADFRT
ADMUD
ADNMO
ADUVX
AEBSH
AEFWE
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEUYN
AEVXI
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AHMBA
AHPOS
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AQUVI
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKOJK
BLXMC
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GNUQQ
GUQSH
HCIFZ
HLW
HMCUK
HVGLF
HZ~
IHE
J1W
KOM
L6V
LK8
LX3
M0T
M1P
M2O
M41
M7P
M7S
MO0
MVM
N9A
O-L
O9-
O9.
OAUVE
OK~
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
Q38
R2-
RNS
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSU
SSZ
T5K
TAE
TN5
UKHRP
WUQ
XPP
Y6R
Z5R
ZGI
ZMT
~02
~G-
~KM
AFCTW
AGRNS
ALIPV
BNPGV
RIG
SSH
AAYXX
CITATION
EFLBG
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7XB
8BQ
8FD
8FK
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c452t-f24a31d2fa306f117b3c13286c35ec452b11b48b873975a612957350b45a0f103
IEDL.DBID AIKHN
ISSN 0167-7799
1879-3096
IngestDate Fri Sep 05 17:43:34 EDT 2025
Sun Aug 31 02:47:29 EDT 2025
Mon Jul 21 05:59:58 EDT 2025
Wed Sep 10 05:46:58 EDT 2025
Tue Jul 29 20:08:47 EDT 2025
Fri Jul 25 06:37:20 EDT 2025
Tue Aug 26 20:10:18 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords TadA variants
CRISPR
base editing
plants
UNG
Language English
License Copyright © 2025 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c452t-f24a31d2fa306f117b3c13286c35ec452b11b48b873975a612957350b45a0f103
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5403-9451
PMID 40187931
PQID 3226652253
PQPubID 2031074
PageCount 23
ParticipantIDs proquest_miscellaneous_3186785113
proquest_journals_3226652253
pubmed_primary_40187931
crossref_primary_10_1016_j_tibtech_2025_03_001
elsevier_sciencedirect_doi_10_1016_j_tibtech_2025_03_001
elsevier_clinicalkeyesjournals_1_s2_0_S0167779925000861
elsevier_clinicalkey_doi_10_1016_j_tibtech_2025_03_001
PublicationCentury 2000
PublicationDate 2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Trends in biotechnology (Regular ed.)
PublicationTitleAlternate Trends Biotechnol
PublicationYear 2025
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Jin (bb0290) 2020; 16
Zeng (bb0155) 2020; 13
Tong (bb0035) 2023; 10
Zeng (bb0110) 2022; 23
Komor (bb0045) 2016; 533
Yu (bb0220) 2024; 5
Lanes (bb0140) 2002; 6
Li, Durbin (bb0270) 2009; 25
Bae (bb0295) 2014; 30
Wilm (bb0280) 2012; 40
Qin (bb0225) 2020; 8
Clement (bb0260) 2019; 37
Chen (bb0055) 2022; 5
Kurt (bb0020) 2021; 39
Lanes (bb0195) 2000; 127
Kim (bb0285) 2018; 15
Tong (bb0205) 2024; 15
Yang (bb0080) 2023; 14
Huang (bb0010) 2023; 186
Xing (bb0245) 2014; 14
Liu (bb0265) 2024; 25
Wang (bb0120) 2023; 10
Hu (bb0250) 2016; 6
Jin (bb0175) 2019; 364
Li (bb0170) 2021; 14
Yuan (bb0065) 2021; 12
Chen (bb0165) 2023; 41
Li (bb0185) 2022; 23
Sretenovic (bb0100) 2021; 3
Ren (bb0150) 2021; 19
Li (bb0190) 2024; 25
Tong (bb0025) 2023; 41
Yang (bb0085) 2022; 9
Dong (bb0075) 2022; 40
Sun (bb0070) 2022; 30
Zou (bb0135) 2022; 65
Zhao (bb0050) 2021; 39
Wang (bb0230) 2023; 11
Clarke (bb0255) 2009; 2009
Molla (bb0090) 2021; 7
Grützner (bb0235) 2021; 2
McKenna (bb0275) 2010; 20
Koblan (bb0060) 2021; 39
Li (bb0095) 2023; 65
Tian (bb0105) 2022; 20
Sang (bb0200) 2015; 43
Anzalone (bb0005) 2020; 38
Bai (bb0240) 2024; 17
Bai (bb0180) 2020; 18
He (bb0030) 2024; 84
Fan (bb0215) 2024; 15
Neugebauer (bb0160) 2023; 41
Wu (bb0210) 2025
Liu (bb0145) 2019; 62
Ye (bb0040) 2024; 42
Chen (bb0015) 2021; 12
LeBlanc (bb0125) 2018; 93
Lee (bb0115) 2023; 66
Malzahn (bb0130) 2019; 17
Sang (10.1016/j.tibtech.2025.03.001_bb0200) 2015; 43
Grützner (10.1016/j.tibtech.2025.03.001_bb0235) 2021; 2
Zeng (10.1016/j.tibtech.2025.03.001_bb0155) 2020; 13
Zeng (10.1016/j.tibtech.2025.03.001_bb0110) 2022; 23
Xing (10.1016/j.tibtech.2025.03.001_bb0245) 2014; 14
Lanes (10.1016/j.tibtech.2025.03.001_bb0195) 2000; 127
Yang (10.1016/j.tibtech.2025.03.001_bb0085) 2022; 9
Jin (10.1016/j.tibtech.2025.03.001_bb0290) 2020; 16
Li (10.1016/j.tibtech.2025.03.001_bb0095) 2023; 65
Ren (10.1016/j.tibtech.2025.03.001_bb0150) 2021; 19
Chen (10.1016/j.tibtech.2025.03.001_bb0015) 2021; 12
Tong (10.1016/j.tibtech.2025.03.001_bb0035) 2023; 10
Kim (10.1016/j.tibtech.2025.03.001_bb0285) 2018; 15
Molla (10.1016/j.tibtech.2025.03.001_bb0090) 2021; 7
Huang (10.1016/j.tibtech.2025.03.001_bb0010) 2023; 186
Zou (10.1016/j.tibtech.2025.03.001_bb0135) 2022; 65
Koblan (10.1016/j.tibtech.2025.03.001_bb0060) 2021; 39
Lanes (10.1016/j.tibtech.2025.03.001_bb0140) 2002; 6
Tong (10.1016/j.tibtech.2025.03.001_bb0025) 2023; 41
Liu (10.1016/j.tibtech.2025.03.001_bb0265) 2024; 25
Malzahn (10.1016/j.tibtech.2025.03.001_bb0130) 2019; 17
Zhao (10.1016/j.tibtech.2025.03.001_bb0050) 2021; 39
Sun (10.1016/j.tibtech.2025.03.001_bb0070) 2022; 30
Tong (10.1016/j.tibtech.2025.03.001_bb0205) 2024; 15
Kurt (10.1016/j.tibtech.2025.03.001_bb0020) 2021; 39
Qin (10.1016/j.tibtech.2025.03.001_bb0225) 2020; 8
Yang (10.1016/j.tibtech.2025.03.001_bb0080) 2023; 14
Clarke (10.1016/j.tibtech.2025.03.001_bb0255) 2009; 2009
Li (10.1016/j.tibtech.2025.03.001_bb0270) 2009; 25
Wilm (10.1016/j.tibtech.2025.03.001_bb0280) 2012; 40
Hu (10.1016/j.tibtech.2025.03.001_bb0250) 2016; 6
Chen (10.1016/j.tibtech.2025.03.001_bb0055) 2022; 5
Wang (10.1016/j.tibtech.2025.03.001_bb0230) 2023; 11
Yu (10.1016/j.tibtech.2025.03.001_bb0220) 2024; 5
Bae (10.1016/j.tibtech.2025.03.001_bb0295) 2014; 30
Sretenovic (10.1016/j.tibtech.2025.03.001_bb0100) 2021; 3
Komor (10.1016/j.tibtech.2025.03.001_bb0045) 2016; 533
Bai (10.1016/j.tibtech.2025.03.001_bb0240) 2024; 17
Ye (10.1016/j.tibtech.2025.03.001_bb0040) 2024; 42
Liu (10.1016/j.tibtech.2025.03.001_bb0145) 2019; 62
Lee (10.1016/j.tibtech.2025.03.001_bb0115) 2023; 66
Bai (10.1016/j.tibtech.2025.03.001_bb0180) 2020; 18
Li (10.1016/j.tibtech.2025.03.001_bb0170) 2021; 14
Wang (10.1016/j.tibtech.2025.03.001_bb0120) 2023; 10
Tian (10.1016/j.tibtech.2025.03.001_bb0105) 2022; 20
Fan (10.1016/j.tibtech.2025.03.001_bb0215) 2024; 15
Chen (10.1016/j.tibtech.2025.03.001_bb0165) 2023; 41
Wu (10.1016/j.tibtech.2025.03.001_bb0210) 2025
Dong (10.1016/j.tibtech.2025.03.001_bb0075) 2022; 40
Yuan (10.1016/j.tibtech.2025.03.001_bb0065) 2021; 12
Jin (10.1016/j.tibtech.2025.03.001_bb0175) 2019; 364
Li (10.1016/j.tibtech.2025.03.001_bb0190) 2024; 25
McKenna (10.1016/j.tibtech.2025.03.001_bb0275) 2010; 20
He (10.1016/j.tibtech.2025.03.001_bb0030) 2024; 84
LeBlanc (10.1016/j.tibtech.2025.03.001_bb0125) 2018; 93
Clement (10.1016/j.tibtech.2025.03.001_bb0260) 2019; 37
Neugebauer (10.1016/j.tibtech.2025.03.001_bb0160) 2023; 41
Anzalone (10.1016/j.tibtech.2025.03.001_bb0005) 2020; 38
Li (10.1016/j.tibtech.2025.03.001_bb0185) 2022; 23
References_xml – volume: 12
  start-page: 4902
  year: 2021
  ident: bb0065
  article-title: Optimization of C-to-G base editors with sequence context preference predictable by machine learning methods
  publication-title: Nat. Commun.
– volume: 2
  year: 2021
  ident: bb0235
  article-title: High-efficiency genome editing in plants mediated by a Cas9 gene containing multiple introns
  publication-title: Plant Commun.
– volume: 25
  start-page: 1754
  year: 2009
  end-page: 1760
  ident: bb0270
  article-title: Fast and accurate short read alignment with Burrows–Wheeler transform
  publication-title: Bioinformatics
– volume: 40
  year: 2022
  ident: bb0075
  article-title: Enhancing glycosylase base-editor activity by fusion to transactivation modules
  publication-title: Cell Rep.
– volume: 2009
  start-page: 5177
  year: 2009
  ident: bb0255
  article-title: Cetyltrimethyl ammonium bromide (CTAB) DNA Miniprep for plant DNA isolation
  publication-title: Cold Spring Harb Protoc
– volume: 13
  start-page: 1666
  year: 2020
  end-page: 1669
  ident: bb0155
  article-title: PhieCBEs: plant high-efficiency cytidine base editors with expanded target range
  publication-title: Mol. Plant
– volume: 41
  start-page: 673
  year: 2023
  end-page: 685
  ident: bb0160
  article-title: Evolution of an adenine base editor into a small, efficient cytosine base editor with low off-target activity
  publication-title: Nat. Biotechnol.
– volume: 19
  start-page: 2052
  year: 2021
  end-page: 2068
  ident: bb0150
  article-title: Improved plant cytosine base editors with high editing activity, purity, and specificity
  publication-title: Plant Biotechnol. J.
– volume: 84
  start-page: 1257
  year: 2024
  end-page: 1270
  ident: bb0030
  article-title: Protein language models-assisted optimization of a uracil-N-glycosylase variant enables programmable T-to-G and T-to-C base editing
  publication-title: Mol. Cell
– volume: 15
  start-page: 591
  year: 2018
  end-page: 594
  ident: bb0285
  article-title: Strelka2: fast and accurate calling of germline and somatic variants
  publication-title: Nat. Methods
– volume: 20
  start-page: 1297
  year: 2010
  end-page: 1303
  ident: bb0275
  article-title: The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data
  publication-title: Genome Res.
– volume: 65
  start-page: 2328
  year: 2022
  end-page: 2331
  ident: bb0135
  article-title: Improving the efficiency of prime editing with epegRNAs and high-temperature treatment in rice
  publication-title: Sci. China Life Sci.
– volume: 23
  start-page: 161
  year: 2022
  ident: bb0185
  article-title: Development of a highly efficient prime editor 2 system in plants
  publication-title: Genome Biol.
– volume: 93
  start-page: 377
  year: 2018
  end-page: 386
  ident: bb0125
  article-title: Increased efficiency of targeted mutagenesis by CRISPR/Cas9 in plants using heat stress
  publication-title: Plant J.
– volume: 43
  start-page: 8452
  year: 2015
  end-page: 8463
  ident: bb0200
  article-title: A unique uracil-DNA binding protein of the uracil DNA glycosylase superfamily
  publication-title: Nucleic Acids Res.
– volume: 42
  start-page: 1538
  year: 2024
  end-page: 1547
  ident: bb0040
  article-title: Glycosylase-based base editors for efficient T-to-G and C-to-G editing in mammalian cells
  publication-title: Nat. Biotechnol.
– volume: 17
  start-page: 9
  year: 2019
  ident: bb0130
  article-title: Application of CRISPR-Cas12a temperature sensitivity for improved genome editing in rice, maize, and Arabidopsis
  publication-title: BMC Biol.
– volume: 30
  start-page: 2452
  year: 2022
  end-page: 2463
  ident: bb0070
  article-title: Reconstructed glycosylase base editors GBE2.0 with enhanced C-to-G base editing efficiency and purity
  publication-title: Mol. Ther.
– volume: 3
  year: 2021
  ident: bb0100
  article-title: Exploring C-To-G base editing in rice, tomato, and poplar
  publication-title: Front. Genome Ed.
– volume: 127
  start-page: 399
  year: 2000
  end-page: 410
  ident: bb0195
  article-title: Purification and characterization of a cold-adapted uracil-DNA glycosylase from Atlantic cod (Gadus morhua)
  publication-title: Comp. Biochem. Physiol. B
– volume: 5
  start-page: 389
  year: 2022
  end-page: 396
  ident: bb0055
  article-title: Efficient C-to-G base editing with improved target compatibility using engineered deaminase–nCas9 fusions
  publication-title: CRISPR J.
– volume: 14
  start-page: 2430
  year: 2023
  ident: bb0080
  article-title: HMGN1 enhances CRISPR-directed dual-function A-to-G and C-to-G base editing
  publication-title: Nat. Commun.
– volume: 39
  start-page: 41
  year: 2021
  end-page: 46
  ident: bb0020
  article-title: CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells
  publication-title: Nat. Biotechnol.
– volume: 16
  start-page: 431
  year: 2020
  end-page: 457
  ident: bb0290
  article-title: An unbiased method for evaluating the genome-wide specificity of base editors in rice
  publication-title: Nat. Protoc.
– volume: 15
  start-page: 4897
  year: 2024
  ident: bb0205
  article-title: Development of deaminase-free T-to-S base editor and C-to-G base editor by engineered human uracil DNA glycosylase
  publication-title: Nat. Commun.
– volume: 25
  start-page: 131
  year: 2024
  ident: bb0265
  article-title: Conditional knockdown of OsMLH1 to improve plant prime editing systems without disturbing fertility in rice
  publication-title: Genome Biol.
– volume: 41
  start-page: 663
  year: 2023
  end-page: 672
  ident: bb0165
  article-title: Re-engineering the adenine deaminase TadA-8e for efficient and specific CRISPR-based cytosine base editing
  publication-title: Nat. Biotechnol.
– volume: 20
  start-page: 1238
  year: 2022
  end-page: 1240
  ident: bb0105
  article-title: Efficient C-to-G editing in rice using an optimized base editor
  publication-title: Plant Biotechnol. J.
– volume: 6
  year: 2016
  ident: bb0250
  article-title: Plant phosphomannose isomerase as a selectable marker for rice transformation
  publication-title: Sci. Rep.
– volume: 30
  start-page: 1473
  year: 2014
  end-page: 1475
  ident: bb0295
  article-title: Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases
  publication-title: Bioinformatics
– volume: 65
  start-page: 444
  year: 2023
  end-page: 467
  ident: bb0095
  article-title: Plant base editing and prime editing: the current status and future perspectives
  publication-title: J. Integr. Plant Biol.
– volume: 18
  start-page: 721
  year: 2020
  end-page: 731
  ident: bb0180
  article-title: Generation of a multiplex mutagenesis population via pooled CRISPR-Cas9 in soya bean
  publication-title: Plant Biotechnol. J.
– volume: 5
  year: 2024
  ident: bb0220
  article-title: Diverse nucleotide substitutions in rice base editing mediated by novel TadA variants
  publication-title: Plant Commun.
– volume: 38
  start-page: 824
  year: 2020
  end-page: 844
  ident: bb0005
  article-title: Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors
  publication-title: Nat. Biotechnol.
– volume: 62
  start-page: 1
  year: 2019
  end-page: 7
  ident: bb0145
  article-title: Hi-TOM: a platform for high-throughput tracking of mutations induced by CRISPR/Cas systems
  publication-title: Sci. China Life Sci.
– volume: 41
  start-page: 1080
  year: 2023
  end-page: 1084
  ident: bb0025
  article-title: Programmable A-to-Y base editing by fusing an adenine base editor with an N-methylpurine DNA glycosylase
  publication-title: Nat. Biotechnol.
– volume: 39
  start-page: 1414
  year: 2021
  end-page: 1425
  ident: bb0060
  article-title: Efficient C•G-to-G•C base editors developed using CRISPRi screens, target-library analysis, and machine learning
  publication-title: Nat. Biotechnol.
– volume: 14
  start-page: 352
  year: 2021
  end-page: 360
  ident: bb0170
  article-title: Genome editing mediated by SpCas9 variants with broad non-canonical PAM compatibility in plants
  publication-title: Mol. Plant
– volume: 23
  start-page: 7990
  year: 2022
  ident: bb0110
  article-title: Exploring C-to-G and A-to-Y base editing in rice by using new vector tools
  publication-title: Int. J. Mol. Sci.
– volume: 15
  start-page: 5103
  year: 2024
  ident: bb0215
  article-title: High performance TadA-8e derived cytosine and dual base editors with undetectable off-target effects in plants
  publication-title: Nat. Commun.
– volume: 11
  start-page: 1451
  year: 2023
  end-page: 1457
  ident: bb0230
  article-title: Development of plant cytosine base editors with the Cas12a system
  publication-title: Crop J.
– volume: 40
  start-page: 11189
  year: 2012
  end-page: 11201
  ident: bb0280
  article-title: LoFreq: a sequence-quality aware, ultra-sensitive variant caller for uncovering cell-population heterogeneity from high-throughput sequencing datasets
  publication-title: Nucleic Acids Res.
– volume: 12
  start-page: 1384
  year: 2021
  ident: bb0015
  article-title: Programmable C:G to G:C genome editing with CRISPR-Cas9-directed base excision repair proteins
  publication-title: Nat. Commun.
– volume: 39
  start-page: 35
  year: 2021
  end-page: 40
  ident: bb0050
  article-title: Glycosylase base editors enable C-to-A and C-to-G base changes
  publication-title: Nat. Biotechnol.
– year: 2025
  ident: bb0210
  article-title: Targeted deaminase-free T-to-G and C-to-K base editing in rice by fused human uracil DNA glycosylase variants
  publication-title: Plant Biotechnol. J.
– volume: 6
  start-page: 73
  year: 2002
  end-page: 86
  ident: bb0140
  article-title: Identification, cloning, and expression of uracil-DNA glycosylase from Atlantic cod (
  publication-title: Extremophiles
– volume: 9
  year: 2022
  ident: bb0085
  article-title: Pioneer factor improves CRISPR-based C-To-G and C-To-T base editing
  publication-title: Adv. Sci.
– volume: 66
  start-page: 18
  year: 2023
  ident: bb0115
  article-title: Application of CRISPR-based C-to-G base editing in rice protoplasts
  publication-title: Appl. Biol. Chem.
– volume: 25
  start-page: 603
  year: 2024
  end-page: 622
  ident: bb0190
  article-title: Targeted genome-modification tools and their advanced applications in crop breeding
  publication-title: Nat. Rev. Genet.
– volume: 17
  start-page: 363
  year: 2024
  end-page: 366
  ident: bb0240
  article-title: Expressing a human RNA demethylase as an assister improves gene-editing efficiency in plants
  publication-title: Mol. Plant
– volume: 10
  start-page: 143
  year: 2023
  ident: bb0035
  article-title: Programmable deaminase-free base editors for G-to-Y conversion by engineered glycosylase
  publication-title: Natl. Sci. Rev.
– volume: 533
  start-page: 420
  year: 2016
  end-page: 424
  ident: bb0045
  article-title: Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage
  publication-title: Nature
– volume: 8
  start-page: 396
  year: 2020
  end-page: 402
  ident: bb0225
  article-title: Increasing fidelity and efficiency by modifying cytidine base-editing systems in rice
  publication-title: Crop J.
– volume: 7
  start-page: 1166
  year: 2021
  end-page: 1187
  ident: bb0090
  article-title: Precise plant genome editing using base editors and prime editors
  publication-title: Nat. Plants
– volume: 37
  start-page: 224
  year: 2019
  end-page: 226
  ident: bb0260
  article-title: CRISPResso2 provides accurate and rapid genome editing sequence analysis
  publication-title: Nat. Biotechnol.
– volume: 14
  start-page: 1
  year: 2014
  end-page: 12
  ident: bb0245
  article-title: A CRISPR/Cas9 toolkit for multiplex genome editing in plants
  publication-title: BMC Plant Biol.
– volume: 186
  start-page: 3182
  year: 2023
  end-page: 3195
  ident: bb0010
  article-title: Discovery of deaminase functions by structure-based protein clustering
  publication-title: Cell
– volume: 364
  start-page: 292
  year: 2019
  end-page: 295
  ident: bb0175
  article-title: Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice
  publication-title: Science
– volume: 10
  start-page: 155
  year: 2023
  ident: bb0120
  article-title: Developing a highly efficient CGBE base editor in watermelon
  publication-title: Hortic. Res.
– volume: 23
  start-page: 7990
  year: 2022
  ident: 10.1016/j.tibtech.2025.03.001_bb0110
  article-title: Exploring C-to-G and A-to-Y base editing in rice by using new vector tools
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms23147990
– volume: 20
  start-page: 1297
  year: 2010
  ident: 10.1016/j.tibtech.2025.03.001_bb0275
  article-title: The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data
  publication-title: Genome Res.
  doi: 10.1101/gr.107524.110
– volume: 14
  start-page: 352
  year: 2021
  ident: 10.1016/j.tibtech.2025.03.001_bb0170
  article-title: Genome editing mediated by SpCas9 variants with broad non-canonical PAM compatibility in plants
  publication-title: Mol. Plant
  doi: 10.1016/j.molp.2020.12.017
– volume: 14
  start-page: 2430
  year: 2023
  ident: 10.1016/j.tibtech.2025.03.001_bb0080
  article-title: HMGN1 enhances CRISPR-directed dual-function A-to-G and C-to-G base editing
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-38193-2
– volume: 84
  start-page: 1257
  year: 2024
  ident: 10.1016/j.tibtech.2025.03.001_bb0030
  article-title: Protein language models-assisted optimization of a uracil-N-glycosylase variant enables programmable T-to-G and T-to-C base editing
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2024.01.021
– volume: 43
  start-page: 8452
  year: 2015
  ident: 10.1016/j.tibtech.2025.03.001_bb0200
  article-title: A unique uracil-DNA binding protein of the uracil DNA glycosylase superfamily
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv854
– volume: 38
  start-page: 824
  year: 2020
  ident: 10.1016/j.tibtech.2025.03.001_bb0005
  article-title: Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-020-0561-9
– volume: 65
  start-page: 2328
  year: 2022
  ident: 10.1016/j.tibtech.2025.03.001_bb0135
  article-title: Improving the efficiency of prime editing with epegRNAs and high-temperature treatment in rice
  publication-title: Sci. China Life Sci.
  doi: 10.1007/s11427-022-2147-2
– volume: 66
  start-page: 18
  year: 2023
  ident: 10.1016/j.tibtech.2025.03.001_bb0115
  article-title: Application of CRISPR-based C-to-G base editing in rice protoplasts
  publication-title: Appl. Biol. Chem.
  doi: 10.1186/s13765-023-00775-5
– volume: 3
  year: 2021
  ident: 10.1016/j.tibtech.2025.03.001_bb0100
  article-title: Exploring C-To-G base editing in rice, tomato, and poplar
  publication-title: Front. Genome Ed.
  doi: 10.3389/fgeed.2021.756766
– volume: 13
  start-page: 1666
  year: 2020
  ident: 10.1016/j.tibtech.2025.03.001_bb0155
  article-title: PhieCBEs: plant high-efficiency cytidine base editors with expanded target range
  publication-title: Mol. Plant
  doi: 10.1016/j.molp.2020.11.001
– volume: 40
  start-page: 11189
  year: 2012
  ident: 10.1016/j.tibtech.2025.03.001_bb0280
  article-title: LoFreq: a sequence-quality aware, ultra-sensitive variant caller for uncovering cell-population heterogeneity from high-throughput sequencing datasets
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks918
– volume: 37
  start-page: 224
  year: 2019
  ident: 10.1016/j.tibtech.2025.03.001_bb0260
  article-title: CRISPResso2 provides accurate and rapid genome editing sequence analysis
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0032-3
– volume: 41
  start-page: 673
  year: 2023
  ident: 10.1016/j.tibtech.2025.03.001_bb0160
  article-title: Evolution of an adenine base editor into a small, efficient cytosine base editor with low off-target activity
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-022-01533-6
– volume: 15
  start-page: 5103
  year: 2024
  ident: 10.1016/j.tibtech.2025.03.001_bb0215
  article-title: High performance TadA-8e derived cytosine and dual base editors with undetectable off-target effects in plants
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-49473-w
– volume: 9
  year: 2022
  ident: 10.1016/j.tibtech.2025.03.001_bb0085
  article-title: Pioneer factor improves CRISPR-based C-To-G and C-To-T base editing
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202202957
– volume: 39
  start-page: 35
  year: 2021
  ident: 10.1016/j.tibtech.2025.03.001_bb0050
  article-title: Glycosylase base editors enable C-to-A and C-to-G base changes
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-020-0592-2
– volume: 20
  start-page: 1238
  year: 2022
  ident: 10.1016/j.tibtech.2025.03.001_bb0105
  article-title: Efficient C-to-G editing in rice using an optimized base editor
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/pbi.13841
– volume: 18
  start-page: 721
  year: 2020
  ident: 10.1016/j.tibtech.2025.03.001_bb0180
  article-title: Generation of a multiplex mutagenesis population via pooled CRISPR-Cas9 in soya bean
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/pbi.13239
– volume: 2
  year: 2021
  ident: 10.1016/j.tibtech.2025.03.001_bb0235
  article-title: High-efficiency genome editing in plants mediated by a Cas9 gene containing multiple introns
  publication-title: Plant Commun.
  doi: 10.1016/j.xplc.2020.100135
– volume: 5
  start-page: 389
  year: 2022
  ident: 10.1016/j.tibtech.2025.03.001_bb0055
  article-title: Efficient C-to-G base editing with improved target compatibility using engineered deaminase–nCas9 fusions
  publication-title: CRISPR J.
  doi: 10.1089/crispr.2021.0124
– volume: 10
  start-page: 155
  year: 2023
  ident: 10.1016/j.tibtech.2025.03.001_bb0120
  article-title: Developing a highly efficient CGBE base editor in watermelon
  publication-title: Hortic. Res.
  doi: 10.1093/hr/uhad155
– volume: 15
  start-page: 591
  year: 2018
  ident: 10.1016/j.tibtech.2025.03.001_bb0285
  article-title: Strelka2: fast and accurate calling of germline and somatic variants
  publication-title: Nat. Methods
  doi: 10.1038/s41592-018-0051-x
– volume: 8
  start-page: 396
  year: 2020
  ident: 10.1016/j.tibtech.2025.03.001_bb0225
  article-title: Increasing fidelity and efficiency by modifying cytidine base-editing systems in rice
  publication-title: Crop J.
  doi: 10.1016/j.cj.2019.04.007
– volume: 6
  start-page: 73
  year: 2002
  ident: 10.1016/j.tibtech.2025.03.001_bb0140
  article-title: Identification, cloning, and expression of uracil-DNA glycosylase from Atlantic cod (Gadus morhua): characterization and homology modeling of the cold-active catalytic domain
  publication-title: Extremophiles
  doi: 10.1007/s007920100225
– volume: 25
  start-page: 131
  year: 2024
  ident: 10.1016/j.tibtech.2025.03.001_bb0265
  article-title: Conditional knockdown of OsMLH1 to improve plant prime editing systems without disturbing fertility in rice
  publication-title: Genome Biol.
  doi: 10.1186/s13059-024-03282-y
– volume: 533
  start-page: 420
  year: 2016
  ident: 10.1016/j.tibtech.2025.03.001_bb0045
  article-title: Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage
  publication-title: Nature
  doi: 10.1038/nature17946
– volume: 364
  start-page: 292
  year: 2019
  ident: 10.1016/j.tibtech.2025.03.001_bb0175
  article-title: Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice
  publication-title: Science
  doi: 10.1126/science.aaw7166
– volume: 17
  start-page: 363
  year: 2024
  ident: 10.1016/j.tibtech.2025.03.001_bb0240
  article-title: Expressing a human RNA demethylase as an assister improves gene-editing efficiency in plants
  publication-title: Mol. Plant
  doi: 10.1016/j.molp.2024.02.010
– volume: 15
  start-page: 4897
  year: 2024
  ident: 10.1016/j.tibtech.2025.03.001_bb0205
  article-title: Development of deaminase-free T-to-S base editor and C-to-G base editor by engineered human uracil DNA glycosylase
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-49343-5
– volume: 30
  start-page: 2452
  year: 2022
  ident: 10.1016/j.tibtech.2025.03.001_bb0070
  article-title: Reconstructed glycosylase base editors GBE2.0 with enhanced C-to-G base editing efficiency and purity
  publication-title: Mol. Ther.
  doi: 10.1016/j.ymthe.2022.03.023
– volume: 62
  start-page: 1
  year: 2019
  ident: 10.1016/j.tibtech.2025.03.001_bb0145
  article-title: Hi-TOM: a platform for high-throughput tracking of mutations induced by CRISPR/Cas systems
  publication-title: Sci. China Life Sci.
  doi: 10.1007/s11427-018-9402-9
– volume: 23
  start-page: 161
  year: 2022
  ident: 10.1016/j.tibtech.2025.03.001_bb0185
  article-title: Development of a highly efficient prime editor 2 system in plants
  publication-title: Genome Biol.
  doi: 10.1186/s13059-022-02730-x
– volume: 42
  start-page: 1538
  year: 2024
  ident: 10.1016/j.tibtech.2025.03.001_bb0040
  article-title: Glycosylase-based base editors for efficient T-to-G and C-to-G editing in mammalian cells
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-023-02050-w
– year: 2025
  ident: 10.1016/j.tibtech.2025.03.001_bb0210
  article-title: Targeted deaminase-free T-to-G and C-to-K base editing in rice by fused human uracil DNA glycosylase variants
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/pbi.14583
– volume: 11
  start-page: 1451
  year: 2023
  ident: 10.1016/j.tibtech.2025.03.001_bb0230
  article-title: Development of plant cytosine base editors with the Cas12a system
  publication-title: Crop J.
  doi: 10.1016/j.cj.2023.03.002
– volume: 7
  start-page: 1166
  year: 2021
  ident: 10.1016/j.tibtech.2025.03.001_bb0090
  article-title: Precise plant genome editing using base editors and prime editors
  publication-title: Nat. Plants
  doi: 10.1038/s41477-021-00991-1
– volume: 40
  year: 2022
  ident: 10.1016/j.tibtech.2025.03.001_bb0075
  article-title: Enhancing glycosylase base-editor activity by fusion to transactivation modules
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2022.111090
– volume: 41
  start-page: 1080
  year: 2023
  ident: 10.1016/j.tibtech.2025.03.001_bb0025
  article-title: Programmable A-to-Y base editing by fusing an adenine base editor with an N-methylpurine DNA glycosylase
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-022-01595-6
– volume: 5
  year: 2024
  ident: 10.1016/j.tibtech.2025.03.001_bb0220
  article-title: Diverse nucleotide substitutions in rice base editing mediated by novel TadA variants
  publication-title: Plant Commun.
  doi: 10.1016/j.xplc.2024.100926
– volume: 186
  start-page: 3182
  year: 2023
  ident: 10.1016/j.tibtech.2025.03.001_bb0010
  article-title: Discovery of deaminase functions by structure-based protein clustering
  publication-title: Cell
  doi: 10.1016/j.cell.2023.05.041
– volume: 30
  start-page: 1473
  year: 2014
  ident: 10.1016/j.tibtech.2025.03.001_bb0295
  article-title: Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu048
– volume: 25
  start-page: 603
  year: 2024
  ident: 10.1016/j.tibtech.2025.03.001_bb0190
  article-title: Targeted genome-modification tools and their advanced applications in crop breeding
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/s41576-024-00720-2
– volume: 2009
  start-page: 5177
  year: 2009
  ident: 10.1016/j.tibtech.2025.03.001_bb0255
  article-title: Cetyltrimethyl ammonium bromide (CTAB) DNA Miniprep for plant DNA isolation
  publication-title: Cold Spring Harb Protoc
  doi: 10.1101/pdb.prot5177
– volume: 19
  start-page: 2052
  year: 2021
  ident: 10.1016/j.tibtech.2025.03.001_bb0150
  article-title: Improved plant cytosine base editors with high editing activity, purity, and specificity
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/pbi.13635
– volume: 12
  start-page: 1384
  year: 2021
  ident: 10.1016/j.tibtech.2025.03.001_bb0015
  article-title: Programmable C:G to G:C genome editing with CRISPR-Cas9-directed base excision repair proteins
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-21559-9
– volume: 39
  start-page: 41
  year: 2021
  ident: 10.1016/j.tibtech.2025.03.001_bb0020
  article-title: CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-020-0609-x
– volume: 12
  start-page: 4902
  year: 2021
  ident: 10.1016/j.tibtech.2025.03.001_bb0065
  article-title: Optimization of C-to-G base editors with sequence context preference predictable by machine learning methods
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-25217-y
– volume: 93
  start-page: 377
  year: 2018
  ident: 10.1016/j.tibtech.2025.03.001_bb0125
  article-title: Increased efficiency of targeted mutagenesis by CRISPR/Cas9 in plants using heat stress
  publication-title: Plant J.
  doi: 10.1111/tpj.13782
– volume: 16
  start-page: 431
  year: 2020
  ident: 10.1016/j.tibtech.2025.03.001_bb0290
  article-title: An unbiased method for evaluating the genome-wide specificity of base editors in rice
  publication-title: Nat. Protoc.
  doi: 10.1038/s41596-020-00423-y
– volume: 14
  start-page: 1
  year: 2014
  ident: 10.1016/j.tibtech.2025.03.001_bb0245
  article-title: A CRISPR/Cas9 toolkit for multiplex genome editing in plants
  publication-title: BMC Plant Biol.
  doi: 10.1186/s12870-014-0327-y
– volume: 127
  start-page: 399
  year: 2000
  ident: 10.1016/j.tibtech.2025.03.001_bb0195
  article-title: Purification and characterization of a cold-adapted uracil-DNA glycosylase from Atlantic cod (Gadus morhua)
  publication-title: Comp. Biochem. Physiol. B
  doi: 10.1016/S0305-0491(00)00271-6
– volume: 10
  start-page: 143
  year: 2023
  ident: 10.1016/j.tibtech.2025.03.001_bb0035
  article-title: Programmable deaminase-free base editors for G-to-Y conversion by engineered glycosylase
  publication-title: Natl. Sci. Rev.
  doi: 10.1093/nsr/nwad143
– volume: 39
  start-page: 1414
  year: 2021
  ident: 10.1016/j.tibtech.2025.03.001_bb0060
  article-title: Efficient C•G-to-G•C base editors developed using CRISPRi screens, target-library analysis, and machine learning
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-021-00938-z
– volume: 17
  start-page: 9
  year: 2019
  ident: 10.1016/j.tibtech.2025.03.001_bb0130
  article-title: Application of CRISPR-Cas12a temperature sensitivity for improved genome editing in rice, maize, and Arabidopsis
  publication-title: BMC Biol.
  doi: 10.1186/s12915-019-0629-5
– volume: 25
  start-page: 1754
  year: 2009
  ident: 10.1016/j.tibtech.2025.03.001_bb0270
  article-title: Fast and accurate short read alignment with Burrows–Wheeler transform
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp324
– volume: 41
  start-page: 663
  year: 2023
  ident: 10.1016/j.tibtech.2025.03.001_bb0165
  article-title: Re-engineering the adenine deaminase TadA-8e for efficient and specific CRISPR-based cytosine base editing
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-022-01532-7
– volume: 65
  start-page: 444
  year: 2023
  ident: 10.1016/j.tibtech.2025.03.001_bb0095
  article-title: Plant base editing and prime editing: the current status and future perspectives
  publication-title: J. Integr. Plant Biol.
  doi: 10.1111/jipb.13425
– volume: 6
  year: 2016
  ident: 10.1016/j.tibtech.2025.03.001_bb0250
  article-title: Plant phosphomannose isomerase as a selectable marker for rice transformation
  publication-title: Sci. Rep.
SSID ssj0003791
Score 2.4809577
Snippet A cod uracil DNA glycosylase from the cold-adapted organism Gadus morhua enhanced cytosine (C)-to-guanine (G) base editor (CGBE) activities in...
HighlightsA cod uracil DNA glycosylase from the cold-adapted organism Gadus morhua enhanced cytosine (C)-to-guanine (G) base editor (CGBE) activities in rice....
Plant cytosine (C)-to-guanine (G) base editors (CGBEs) have been established but suffer from limited editing efficiencies and low outcome purities. This study...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 1765
SubjectTerms Adenine
Animals
base editing
Cold Temperature
CRISPR
CRISPR-Cas Systems
Cytidine Deaminase - genetics
Cytidine Deaminase - metabolism
Cytosine
Cytosine - metabolism
DNA glycosylase
Editing
Efficiency
Enzymes
Gene Editing - methods
Gene sequencing
Genomic analysis
Glycosylation
Guanine - metabolism
Humans
Internal Medicine
Mutation
Oryza - genetics
Plant breeding
plants
Plants, Genetically Modified - genetics
Proteins
Soybeans
TadA variants
Tobacco
UNG
Uracil
Uracil-DNA glycosidase
Uracil-DNA Glycosidase - genetics
Uracil-DNA Glycosidase - metabolism
Whole genome sequencing
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKe4AeEJTXQkFG4moax3bsHBAqq5aKwwqhVtqb5VeQqlWysNtK_ffMJHHKgQLnjJ1oPJn5xh7PR8i7mCAqxiCYUzIyCSGP1c4HZlJoRJM097EvkF1UZxfyy1Itd8gi34XBssrsE3tHHbuAe-RHYHhVBWBBiY_rHwxZo_B0NVNouJFaIX7oW4zdI3vgkg3Y_d6nk8XXb5NvFnrg0MNu31rX9e2dnqNLiBEeG6dC0liqofMpvyta3YVG-6h0-og8HOEkPR7W_zHZSe0BuT_PLG4HZP-3hoNPyHLaQ6DrFeiUztm2Y58pxjIKYQypdyhuzVJHwUIic9GtAZPS76ub0G1uVijn2kjPXTwGTdNrSLWxkuYpuTg9OZ-fsZFbgQWpyi1rSukEj2XjIGdoONdeBEhMTRWESijiOffSeKMBsCgHOKhWWqjCS-WKhhfiGdltuza9INSIIlTGOVFLL2Ee07haqYgHiFo3ppyR91mHdj200LC5tuzSjkq3qHRbCKyxm5Eqa9rm-6Hg0Sw4-X8N1H8amDbjf7mx3G5KW2BJW6Vx_UvVJ3Uw0kwjR-gxQIr_eelhNgY7vefWWmfk7fQYlh6PY1ybuiuQwV6CCHhB5vlgRJN-JHIl1oK__Pvkr8gD_JKhfPiQ7G5_XqXXAJK2_s1o-b8Au6ENuA
  priority: 102
  providerName: ProQuest
Title Improving plant C-to-G base editors with a cold-adapted glycosylase and TadA-8e variants
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0167779925000861
https://www.clinicalkey.es/playcontent/1-s2.0-S0167779925000861
https://dx.doi.org/10.1016/j.tibtech.2025.03.001
https://www.ncbi.nlm.nih.gov/pubmed/40187931
https://www.proquest.com/docview/3226652253
https://www.proquest.com/docview/3186785113
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-N7gF4QDC-CmMyEq9e49iOncdSrStUqtDYRN8sO07QpqqtaIe0F_527poPQDCBeHGUxI6Ty_nud_b5DuBNLFErxkJyr1XkClUez30ouC2LSlalESHuHGRn2eRCvZ_r-R6M2r0w5FbZyP5apu-kdXNl0FBzsL68HHwkB3pj8jzVO2COJtB-KvNM92B_-G46mXUCWZo6cR6F-KYGPzbyDK5QMQSKloqWYqrrcKfiNhV1GwTdqaLxQ3jQYEg2rF_zEeyVywO4O2pTtx3A_Z-iDD6GeTdxwNYLJCQb8e2KnzJSYAy_n_LtMJqPZZ4hW0Tuo18jEGWfFzfFanOzoHp-Gdm5j0MkL_uK9jW5zzyBi_HJ-WjCm4QKvFA63fIqVV6KmFYeDYVKCBNkgdaozQqpS6oShAjKBmsQpWiP4CfXRuokKO2TSiTyKfSWq2X5HJiVSZFZ72WugsLn2MrnWkdaNTSmsmkfjlsaunUdN8O1DmVXriG6I6K7RJJjXR-yltKu3RSKYsyhZP9bQ_OnhuWmGYwbJ9wmdYn7jWH6YLuWv_Dcv3R62DKD6_pB2ZhliGe17MPr7jb-elqD8ctydY11KIAgoVys86xmoo4-ihIk5lK8-P_3egn36Kz2Jz6E3vbLdfkKUdM2HMGd428CSzM3WNrx6VEzTug4Pfs0xePbk9mHs-8rDBir
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKeigcEJRXoICR4Gi6Xtvr3UOFSmhJaYkQSqXcXHvtRaqi3cCmoPw5fhsz2Uc5UODSc2xvNDP29409D0Je-gCo6HPBrJKeSYA8llmXszTkhSiC5s6vA2QnyfhUfpip2Qb52eXCYFhldyauD2pf5XhHvguGlyRAFpR4s_jKsGsUvq52LTRs21rB761LjLWJHcdh9QNcuHrv6B3o-1UcHx5MR2PWdhlguVTxkhWxtIL7uLDAngvOtRM5uGhpkgsVcIjj3MnUpRqgW1lgBJnSQkVOKhsVPBKw7g2yKTHDdUA23x5MPn3usUDopmcfVhfXOssuc4h2zwGTHBZqBSc1Vk2lVX4VOl7FftcoeHiH3G7pK91v7O0u2QjlNtkadV3jtsmt3woc3iOz_s6CLuagQzpiy4q9p4idFGATW_1QvAqmloJFema9XQAHpl_mq7yqV3McZ0tPp9bvg2bpd3DtMXLnPjm9Fik_IIOyKsMjQlMR5Ulqrcikk7BOWthMKY8PlloXaTwkrzsZmkVTssN0sWznphW6QaGbSGBM35AknaRNl48KJ6gBUPnXRP2niaFuz4HacFPHJsIQukSj_mO1diJhZtrPbKlOQ2H-56M7nTGY_juXu2NIXvQ_g-rx-ceWobqAMVi7EAk2jHnYGFEvH4m9GTPBH_998edkazz9eGJOjibHT8hN_FdN6PIOGSy_XYSnQNCW7lm7Cyg5u-6N9wva6Efp
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVuJxQFBeCwWMBEezcWzHyaFCZdulpWhVoVbam2vHDlK1ShayBe1f5Fcxs3mUAwUuPcePaGbs7xt7PEPIax8AFX0umFXSMwmQxzLrcpaGvBBF0Nz5dYDsNDk4lR9narZBfnZvYTCsstsT1xu1r3I8Ix-B4SUJkAUlRkUbFnG8N3m3-MqwghTetHblNGxbZsHvrNONtY88jsLqB7hz9c7hHuj-TRxP9k_GB6ytOMByqeIlK2JpBfdxYYFJF5xrJ3Jw19IkFypgE8e5k6lLNcC4ssAOMqWFipxUNip4JGDcG2RTA0rKAdl8vz89_tzjgtBN_T7MNK51ll2-JxqdAz45TNoKDmusmqyr_CqkvIoJrxFxco_cbaks3W1s7z7ZCOUWuTXuKshtkTu_JTt8QGb9-QVdzEGfdMyWFftAEUcpQCiW_aF4LEwtBev0zHq7AD5Mv8xXeVWv5tjOlp6eWL8LWqbfwc3HKJ6H5PRapPyIDMqqDE8ITUWUJ6m1IpNOwjhpYTOlPF5eal2k8ZC87WRoFk36DtPFtZ2bVugGhW4igfF9Q5J0kjbd21TYTQ0AzL866j91DHW7J9SGmzo2EYbTJRr1H6u1Qwk9075nS3saOvM_k253xmD6eS5XypC86j-D6vEqyJahuoA2mMcQyTa0edwYUS8fiXUaM8Gf_n3wl-QmLEDz6XB69Izcxp9qopi3yWD57SI8B662dC_aRUDJ2XWvu19QREwV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+plant+C-to-G+base+editors+with+a+cold-adapted+glycosylase+and+TadA-8e+variants&rft.jtitle=Trends+in+biotechnology+%28Regular+ed.%29&rft.au=Jiang%2C+Yingli+%28%E8%92%8B%E8%BF%8E%E5%88%A9%29&rft.au=Xiao%2C+Zhi+%28%E8%82%96%E5%BF%97%29&rft.au=Luo%2C+Zhaopeng+%28%E7%BD%97%E6%9C%9D%E9%B9%8F%29&rft.au=Zhou%2C+Suhuai+%28%E5%91%A8%E8%8B%8F%E6%B7%AE%29&rft.date=2025-07-01&rft.issn=0167-7799&rft.volume=43&rft.issue=7&rft.spage=1765&rft.epage=1787&rft_id=info:doi/10.1016%2Fj.tibtech.2025.03.001&rft.externalDBID=ECK1-s2.0-S0167779925000861&rft.externalDocID=1_s2_0_S0167779925000861
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01677799%2FS0167779924X00086%2Fcov150h.gif