Improving plant C-to-G base editors with a cold-adapted glycosylase and TadA-8e variants
A cod uracil DNA glycosylase from the cold-adapted organism Gadus morhua enhanced cytosine (C)-to-guanine (G) base editor (CGBE) activities in rice.TadA-8e-derived cytidine deaminase (TadA-CDc) variants enabled rice C-to-G conversions.CDc-CGBEco achieved highly efficient C-to-G editing in rice, soyb...
Saved in:
Published in | Trends in biotechnology (Regular ed.) Vol. 43; no. 7; pp. 1765 - 1787 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.07.2025
Elsevier Limited |
Subjects | |
Online Access | Get full text |
ISSN | 0167-7799 1879-3096 1879-3096 |
DOI | 10.1016/j.tibtech.2025.03.001 |
Cover
Abstract | A cod uracil DNA glycosylase from the cold-adapted organism Gadus morhua enhanced cytosine (C)-to-guanine (G) base editor (CGBE) activities in rice.TadA-8e-derived cytidine deaminase (TadA-CDc) variants enabled rice C-to-G conversions.CDc-CGBEco achieved highly efficient C-to-G editing in rice, soybean, and tobacco.No significant off-target effects of the base editors derived from TadA-CDc were detected in rice.
Plant cytosine (C)-to-guanine (G) base editors (CGBEs) have been established but suffer from limited editing efficiencies and low outcome purities. This study engineered a cod uracil DNA glycosylase (cod UNG, coUNG) from the cold-adapted fish Gadus morhua for plant CGBE, demonstrating 1.71- to 2.54-fold increases in C-to-G editing efficiency compared with the CGBE using human UNG (hUNG). Further engineering took advantage of TadA-8e-derived cytidine deaminases (TadA-CDs). These variants induced C substitutions with efficiencies ranging from 26.28% to 30.82% in rice cells, whereas adenine (A) conversion was negligible. By integrating coUNG and TadA-CDc elements with SpCas9 nickase, the resulting CDc-CGBEco achieved pure C-to-G editing without byproducts in up to 52.08% of transgenic lines. Whole-genome sequencing (WGS) analysis revealed no significant off-target effects of the CDc-BEs in rice. In addition, CDc-CGBEco enabled precise C-to-G editing in soybean and tobacco. These engineered CGBEs enhanced editing efficiency, purity, and specificity, suggesting their broad potential for applications in scientific research and crop breeding.
[Display omitted]
CDc-CGBEco introduced in this study is currently at a Technology Readiness Level (TRL) of 5. Using CDc-CGBEco, we obtained C-to-G-edited T0 rice plants with improved agronomic traits, such as herbicide resistance; we also found germline transmission of pure C-to-G edits in T1 offspring in the field. However, several challenges remain. For instance, limited editing activity in tobacco suggests that the universal applicability of CDc-CGBEco needs to be enhanced. In addition, although whole-genome sequencing was conducted to assess off-target effects, more long-term monitoring and diverse condition evaluations are necessary to comprehensively verify the safety and stability of this technology.
A series of uracil DNA glycosylases (UNG) and cytidine deaminases were screened for upgrading plant cytosine (C)-to-guanine (G) base editors (CGBE). An engineered CDc-CGBEco fusing with a cod UNG (coUNG) and a TadA-8e-derived cytidine deaminases (TadA-CDc) exhibited superior performance in C-to-G editing, showing reliable and heritable base editing in monocots and dicots. |
---|---|
AbstractList | Plant cytosine (C)-to-guanine (G) base editors (CGBEs) have been established but suffer from limited editing efficiencies and low outcome purities. This study engineered a cod uracil DNA glycosylase (cod UNG, coUNG) from the cold-adapted fish Gadus morhua for plant CGBE, demonstrating 1.71- to 2.54-fold increases in C-to-G editing efficiency compared with the CGBE using human UNG (hUNG). Further engineering took advantage of TadA-8e-derived cytidine deaminases (TadA-CDs). These variants induced C substitutions with efficiencies ranging from 26.28% to 30.82% in rice cells, whereas adenine (A) conversion was negligible. By integrating coUNG and TadA-CDc elements with SpCas9 nickase, the resulting CDc-CGBEco achieved pure C-to-G editing without byproducts in up to 52.08% of transgenic lines. Whole-genome sequencing (WGS) analysis revealed no significant off-target effects of the CDc-BEs in rice. In addition, CDc-CGBEco enabled precise C-to-G editing in soybean and tobacco. These engineered CGBEs enhanced editing efficiency, purity, and specificity, suggesting their broad potential for applications in scientific research and crop breeding. A cod uracil DNA glycosylase from the cold-adapted organism Gadus morhua enhanced cytosine (C)-to-guanine (G) base editor (CGBE) activities in rice.TadA-8e-derived cytidine deaminase (TadA-CDc) variants enabled rice C-to-G conversions.CDc-CGBEco achieved highly efficient C-to-G editing in rice, soybean, and tobacco.No significant off-target effects of the base editors derived from TadA-CDc were detected in rice. Plant cytosine (C)-to-guanine (G) base editors (CGBEs) have been established but suffer from limited editing efficiencies and low outcome purities. This study engineered a cod uracil DNA glycosylase (cod UNG, coUNG) from the cold-adapted fish Gadus morhua for plant CGBE, demonstrating 1.71- to 2.54-fold increases in C-to-G editing efficiency compared with the CGBE using human UNG (hUNG). Further engineering took advantage of TadA-8e-derived cytidine deaminases (TadA-CDs). These variants induced C substitutions with efficiencies ranging from 26.28% to 30.82% in rice cells, whereas adenine (A) conversion was negligible. By integrating coUNG and TadA-CDc elements with SpCas9 nickase, the resulting CDc-CGBEco achieved pure C-to-G editing without byproducts in up to 52.08% of transgenic lines. Whole-genome sequencing (WGS) analysis revealed no significant off-target effects of the CDc-BEs in rice. In addition, CDc-CGBEco enabled precise C-to-G editing in soybean and tobacco. These engineered CGBEs enhanced editing efficiency, purity, and specificity, suggesting their broad potential for applications in scientific research and crop breeding. [Display omitted] CDc-CGBEco introduced in this study is currently at a Technology Readiness Level (TRL) of 5. Using CDc-CGBEco, we obtained C-to-G-edited T0 rice plants with improved agronomic traits, such as herbicide resistance; we also found germline transmission of pure C-to-G edits in T1 offspring in the field. However, several challenges remain. For instance, limited editing activity in tobacco suggests that the universal applicability of CDc-CGBEco needs to be enhanced. In addition, although whole-genome sequencing was conducted to assess off-target effects, more long-term monitoring and diverse condition evaluations are necessary to comprehensively verify the safety and stability of this technology. A series of uracil DNA glycosylases (UNG) and cytidine deaminases were screened for upgrading plant cytosine (C)-to-guanine (G) base editors (CGBE). An engineered CDc-CGBEco fusing with a cod UNG (coUNG) and a TadA-8e-derived cytidine deaminases (TadA-CDc) exhibited superior performance in C-to-G editing, showing reliable and heritable base editing in monocots and dicots. Plant cytosine (C)-to-guanine (G) base editors (CGBEs) have been established but suffer from limited editing efficiencies and low outcome purities. This study engineered a cod uracil DNA glycosylase (cod UNG, coUNG) from the cold-adapted fish Gadus morhua for plant CGBE, demonstrating 1.71- to 2.54-fold increases in C-to-G editing efficiency compared with the CGBE using human UNG (hUNG). Further engineering took advantage of TadA-8e-derived cytidine deaminases (TadA-CDs). These variants induced C substitutions with efficiencies ranging from 26.28% to 30.82% in rice cells, whereas adenine (A) conversion was negligible. By integrating coUNG and TadA-CDc elements with SpCas9 nickase, the resulting CDc-CGBEco achieved pure C-to-G editing without byproducts in up to 52.08% of transgenic lines. Whole-genome sequencing (WGS) analysis revealed no significant off-target effects of the CDc-BEs in rice. In addition, CDc-CGBEco enabled precise C-to-G editing in soybean and tobacco. These engineered CGBEs enhanced editing efficiency, purity, and specificity, suggesting their broad potential for applications in scientific research and crop breeding.Plant cytosine (C)-to-guanine (G) base editors (CGBEs) have been established but suffer from limited editing efficiencies and low outcome purities. This study engineered a cod uracil DNA glycosylase (cod UNG, coUNG) from the cold-adapted fish Gadus morhua for plant CGBE, demonstrating 1.71- to 2.54-fold increases in C-to-G editing efficiency compared with the CGBE using human UNG (hUNG). Further engineering took advantage of TadA-8e-derived cytidine deaminases (TadA-CDs). These variants induced C substitutions with efficiencies ranging from 26.28% to 30.82% in rice cells, whereas adenine (A) conversion was negligible. By integrating coUNG and TadA-CDc elements with SpCas9 nickase, the resulting CDc-CGBEco achieved pure C-to-G editing without byproducts in up to 52.08% of transgenic lines. Whole-genome sequencing (WGS) analysis revealed no significant off-target effects of the CDc-BEs in rice. In addition, CDc-CGBEco enabled precise C-to-G editing in soybean and tobacco. These engineered CGBEs enhanced editing efficiency, purity, and specificity, suggesting their broad potential for applications in scientific research and crop breeding. HighlightsA cod uracil DNA glycosylase from the cold-adapted organism Gadus morhua enhanced cytosine (C)-to-guanine (G) base editor (CGBE) activities in rice. TadA-8e-derived cytidine deaminase (TadA-CDc) variants enabled rice C-to-G conversions. CDc-CGBEco achieved highly efficient C-to-G editing in rice, soybean, and tobacco. No significant off-target effects of the base editors derived from TadA-CDc were detected in rice. |
Author | Luo, Zhaopeng Pan, Lang Xu, Rongfang Jiang, Yingli Tong, Chaoyun Wei, Pengcheng Zhou, Suhuai Jin, Shan Qin, Ruiying Liu, Xiaoshuang Li, Juan Xiao, Zhi |
Author_xml | – sequence: 1 givenname: Yingli surname: Jiang fullname: Jiang, Yingli organization: College of Agronomy, Anhui Agricultural University, Hefei, 230036, PR China – sequence: 2 givenname: Zhi surname: Xiao fullname: Xiao, Zhi organization: College of Agronomy, Anhui Agricultural University, Hefei, 230036, PR China – sequence: 3 givenname: Zhaopeng surname: Luo fullname: Luo, Zhaopeng organization: China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, PR China – sequence: 4 givenname: Suhuai surname: Zhou fullname: Zhou, Suhuai organization: College of Agronomy, Anhui Agricultural University, Hefei, 230036, PR China – sequence: 5 givenname: Chaoyun surname: Tong fullname: Tong, Chaoyun organization: College of Agronomy, Anhui Agricultural University, Hefei, 230036, PR China – sequence: 6 givenname: Shan surname: Jin fullname: Jin, Shan organization: College of Agronomy, Anhui Agricultural University, Hefei, 230036, PR China – sequence: 7 givenname: Xiaoshuang surname: Liu fullname: Liu, Xiaoshuang organization: College of Agronomy, Anhui Agricultural University, Hefei, 230036, PR China – sequence: 8 givenname: Ruiying surname: Qin fullname: Qin, Ruiying organization: Anhui Province Key Laboratory of Rice Germplasm Innovation and Molecular Improvement, Anhui Academy of Agricultural Sciences, Hefei, 230031, PR China – sequence: 9 givenname: Rongfang surname: Xu fullname: Xu, Rongfang organization: Anhui Province Key Laboratory of Rice Germplasm Innovation and Molecular Improvement, Anhui Academy of Agricultural Sciences, Hefei, 230031, PR China – sequence: 10 givenname: Lang surname: Pan fullname: Pan, Lang organization: College of Plant Protection, Hunan Agricultural University, Changsha, 410128, PR China – sequence: 11 givenname: Juan surname: Li fullname: Li, Juan email: lijuan@aaas.org.cn organization: Anhui Province Key Laboratory of Rice Germplasm Innovation and Molecular Improvement, Anhui Academy of Agricultural Sciences, Hefei, 230031, PR China – sequence: 12 givenname: Pengcheng orcidid: 0000-0001-5403-9451 surname: Wei fullname: Wei, Pengcheng email: weipengcheng@gmail.com organization: College of Agronomy, Anhui Agricultural University, Hefei, 230036, PR China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40187931$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkcFu1DAQhi1URLeFRwBZ4sIlwWPHcXIAVK3aUqkSB4rEzXKcSeslGy-2d9G-PY526aESgtNcvvk1_3xn5GTyExLyGlgJDOr3qzK5LqF9KDnjsmSiZAyekQU0qi0Ea-sTssicKpRq21NyFuOKMSZUCy_IacVmTMCCfL9Zb4LfuemebkYzJboski-uaWciUuxd8iHSXy49UEOtH_vC9GaTsKf34976uB9nzkw9vTP9RdEg3Zngck58SZ4PZoz46jjPybery7vl5-L2y_XN8uK2sJXkqRh4ZQT0fDCC1QOA6oQFwZvaCokz0gF0VdM1SrRKmhp4K5WQrKukYQMwcU7eHXJzjZ9bjEmvXbQ45jLot1ELaGrVSACR0bdP0JXfhilfpwXndS05lzP15khtuzX2ehPc2oS9_vOzDMgDYIOPMeDwiADTsxu90kc3enajmdDZTd77dNjD_I6dw6CjdTjZ_OWANuneu38mfHySYEc3OWvGH7jH-NgGdOSa6a-z_1k_l1l9U88BH_4e8B8H_AZseb_Y |
Cites_doi | 10.3390/ijms23147990 10.1101/gr.107524.110 10.1016/j.molp.2020.12.017 10.1038/s41467-023-38193-2 10.1016/j.molcel.2024.01.021 10.1093/nar/gkv854 10.1038/s41587-020-0561-9 10.1007/s11427-022-2147-2 10.1186/s13765-023-00775-5 10.3389/fgeed.2021.756766 10.1016/j.molp.2020.11.001 10.1093/nar/gks918 10.1038/s41587-019-0032-3 10.1038/s41587-022-01533-6 10.1038/s41467-024-49473-w 10.1002/advs.202202957 10.1038/s41587-020-0592-2 10.1111/pbi.13841 10.1111/pbi.13239 10.1016/j.xplc.2020.100135 10.1089/crispr.2021.0124 10.1093/hr/uhad155 10.1038/s41592-018-0051-x 10.1016/j.cj.2019.04.007 10.1007/s007920100225 10.1186/s13059-024-03282-y 10.1038/nature17946 10.1126/science.aaw7166 10.1016/j.molp.2024.02.010 10.1038/s41467-024-49343-5 10.1016/j.ymthe.2022.03.023 10.1007/s11427-018-9402-9 10.1186/s13059-022-02730-x 10.1038/s41587-023-02050-w 10.1111/pbi.14583 10.1016/j.cj.2023.03.002 10.1038/s41477-021-00991-1 10.1016/j.celrep.2022.111090 10.1038/s41587-022-01595-6 10.1016/j.xplc.2024.100926 10.1016/j.cell.2023.05.041 10.1093/bioinformatics/btu048 10.1038/s41576-024-00720-2 10.1101/pdb.prot5177 10.1111/pbi.13635 10.1038/s41467-021-21559-9 10.1038/s41587-020-0609-x 10.1038/s41467-021-25217-y 10.1111/tpj.13782 10.1038/s41596-020-00423-y 10.1186/s12870-014-0327-y 10.1016/S0305-0491(00)00271-6 10.1093/nsr/nwad143 10.1038/s41587-021-00938-z 10.1186/s12915-019-0629-5 10.1093/bioinformatics/btp324 10.1038/s41587-022-01532-7 10.1111/jipb.13425 |
ContentType | Journal Article |
Copyright | 2025 Elsevier Ltd Elsevier Ltd Copyright © 2025 Elsevier Ltd. All rights reserved. 2025. Elsevier Ltd |
Copyright_xml | – notice: 2025 Elsevier Ltd – notice: Elsevier Ltd – notice: Copyright © 2025 Elsevier Ltd. All rights reserved. – notice: 2025. Elsevier Ltd |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 7X7 7XB 88C 88E 8AO 8BQ 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO F28 FR3 FYUFA GHDGH GNUQQ GUQSH H8D H8G HCIFZ JG9 JQ2 K9. KR7 L6V L7M LK8 L~C L~D M0S M0T M1P M2O M7P M7S MBDVC P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U 7X8 |
DOI | 10.1016/j.tibtech.2025.03.001 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Healthcare Administration Database (Alumni) Medical Database (Alumni Edition) ProQuest Pharma Collection METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Database ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Health & Medical Collection (Alumni) Healthcare Administration Database Proquest Medical Database Research Library Biological Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Research Library Prep ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File ProQuest One Applied & Life Sciences ProQuest One Sustainability Engineered Materials Abstracts Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Ceramic Abstracts Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Health Management (Alumni Edition) Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Health & Medical Research Collection ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest Central Basic ProQuest Health Management ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection Corrosion Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1879-3096 |
EndPage | 1787 |
ExternalDocumentID | 40187931 10_1016_j_tibtech_2025_03_001 S0167779925000861 1_s2_0_S0167779925000861 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .1- .DC .FO .~1 0R~ 123 1B1 1P~ 1RT 1~. 1~5 29Q 4.4 457 4G. 53G 5VS 7-5 71M 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8P~ 9JM 9JN AABNK AAEDT AAEDW AAHBH AAIKC AAIKJ AAKOC AALRI AAMNW AAMRU AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABDPE ABFNM ABFRF ABGSF ABJCF ABJNI ABLJU ABMAC ABNUV ABUDA ABUWG ABWVN ABXDB ACDAQ ACGFO ACGFS ACIWK ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEWK ADEZE ADFRT ADMUD ADNMO ADUVX AEBSH AEFWE AEHWI AEIPS AEKER AENEX AEUPX AEUYN AEVXI AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AHMBA AHPOS AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AQUVI ARAPS ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BGLVJ BHPHI BKOJK BLXMC BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GNUQQ GUQSH HCIFZ HLW HMCUK HVGLF HZ~ IHE J1W KOM L6V LK8 LX3 M0T M1P M2O M41 M7P M7S MO0 MVM N9A O-L O9- O9. OAUVE OK~ OZT P-8 P-9 P2P P62 PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO Q38 R2- RNS ROL RPZ SBG SCC SDF SDG SDP SES SEW SPC SPCBC SSG SSU SSZ T5K TAE TN5 UKHRP WUQ XPP Y6R Z5R ZGI ZMT ~02 ~G- ~KM AFCTW AGRNS ALIPV BNPGV RIG SSH AAYXX CITATION EFLBG CGR CUY CVF ECM EIF NPM 3V. 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 7XB 8BQ 8FD 8FK F28 FR3 H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 |
ID | FETCH-LOGICAL-c452t-f24a31d2fa306f117b3c13286c35ec452b11b48b873975a612957350b45a0f103 |
IEDL.DBID | AIKHN |
ISSN | 0167-7799 1879-3096 |
IngestDate | Fri Sep 05 17:43:34 EDT 2025 Sun Aug 31 02:47:29 EDT 2025 Mon Jul 21 05:59:58 EDT 2025 Wed Sep 10 05:46:58 EDT 2025 Tue Jul 29 20:08:47 EDT 2025 Fri Jul 25 06:37:20 EDT 2025 Tue Aug 26 20:10:18 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | TadA variants CRISPR base editing plants UNG |
Language | English |
License | Copyright © 2025 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c452t-f24a31d2fa306f117b3c13286c35ec452b11b48b873975a612957350b45a0f103 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5403-9451 |
PMID | 40187931 |
PQID | 3226652253 |
PQPubID | 2031074 |
PageCount | 23 |
ParticipantIDs | proquest_miscellaneous_3186785113 proquest_journals_3226652253 pubmed_primary_40187931 crossref_primary_10_1016_j_tibtech_2025_03_001 elsevier_sciencedirect_doi_10_1016_j_tibtech_2025_03_001 elsevier_clinicalkeyesjournals_1_s2_0_S0167779925000861 elsevier_clinicalkey_doi_10_1016_j_tibtech_2025_03_001 |
PublicationCentury | 2000 |
PublicationDate | 2025-07-01 |
PublicationDateYYYYMMDD | 2025-07-01 |
PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Trends in biotechnology (Regular ed.) |
PublicationTitleAlternate | Trends Biotechnol |
PublicationYear | 2025 |
Publisher | Elsevier Ltd Elsevier Limited |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
References | Jin (bb0290) 2020; 16 Zeng (bb0155) 2020; 13 Tong (bb0035) 2023; 10 Zeng (bb0110) 2022; 23 Komor (bb0045) 2016; 533 Yu (bb0220) 2024; 5 Lanes (bb0140) 2002; 6 Li, Durbin (bb0270) 2009; 25 Bae (bb0295) 2014; 30 Wilm (bb0280) 2012; 40 Qin (bb0225) 2020; 8 Clement (bb0260) 2019; 37 Chen (bb0055) 2022; 5 Kurt (bb0020) 2021; 39 Lanes (bb0195) 2000; 127 Kim (bb0285) 2018; 15 Tong (bb0205) 2024; 15 Yang (bb0080) 2023; 14 Huang (bb0010) 2023; 186 Xing (bb0245) 2014; 14 Liu (bb0265) 2024; 25 Wang (bb0120) 2023; 10 Hu (bb0250) 2016; 6 Jin (bb0175) 2019; 364 Li (bb0170) 2021; 14 Yuan (bb0065) 2021; 12 Chen (bb0165) 2023; 41 Li (bb0185) 2022; 23 Sretenovic (bb0100) 2021; 3 Ren (bb0150) 2021; 19 Li (bb0190) 2024; 25 Tong (bb0025) 2023; 41 Yang (bb0085) 2022; 9 Dong (bb0075) 2022; 40 Sun (bb0070) 2022; 30 Zou (bb0135) 2022; 65 Zhao (bb0050) 2021; 39 Wang (bb0230) 2023; 11 Clarke (bb0255) 2009; 2009 Molla (bb0090) 2021; 7 Grützner (bb0235) 2021; 2 McKenna (bb0275) 2010; 20 Koblan (bb0060) 2021; 39 Li (bb0095) 2023; 65 Tian (bb0105) 2022; 20 Sang (bb0200) 2015; 43 Anzalone (bb0005) 2020; 38 Bai (bb0240) 2024; 17 Bai (bb0180) 2020; 18 He (bb0030) 2024; 84 Fan (bb0215) 2024; 15 Neugebauer (bb0160) 2023; 41 Wu (bb0210) 2025 Liu (bb0145) 2019; 62 Ye (bb0040) 2024; 42 Chen (bb0015) 2021; 12 LeBlanc (bb0125) 2018; 93 Lee (bb0115) 2023; 66 Malzahn (bb0130) 2019; 17 Sang (10.1016/j.tibtech.2025.03.001_bb0200) 2015; 43 Grützner (10.1016/j.tibtech.2025.03.001_bb0235) 2021; 2 Zeng (10.1016/j.tibtech.2025.03.001_bb0155) 2020; 13 Zeng (10.1016/j.tibtech.2025.03.001_bb0110) 2022; 23 Xing (10.1016/j.tibtech.2025.03.001_bb0245) 2014; 14 Lanes (10.1016/j.tibtech.2025.03.001_bb0195) 2000; 127 Yang (10.1016/j.tibtech.2025.03.001_bb0085) 2022; 9 Jin (10.1016/j.tibtech.2025.03.001_bb0290) 2020; 16 Li (10.1016/j.tibtech.2025.03.001_bb0095) 2023; 65 Ren (10.1016/j.tibtech.2025.03.001_bb0150) 2021; 19 Chen (10.1016/j.tibtech.2025.03.001_bb0015) 2021; 12 Tong (10.1016/j.tibtech.2025.03.001_bb0035) 2023; 10 Kim (10.1016/j.tibtech.2025.03.001_bb0285) 2018; 15 Molla (10.1016/j.tibtech.2025.03.001_bb0090) 2021; 7 Huang (10.1016/j.tibtech.2025.03.001_bb0010) 2023; 186 Zou (10.1016/j.tibtech.2025.03.001_bb0135) 2022; 65 Koblan (10.1016/j.tibtech.2025.03.001_bb0060) 2021; 39 Lanes (10.1016/j.tibtech.2025.03.001_bb0140) 2002; 6 Tong (10.1016/j.tibtech.2025.03.001_bb0025) 2023; 41 Liu (10.1016/j.tibtech.2025.03.001_bb0265) 2024; 25 Malzahn (10.1016/j.tibtech.2025.03.001_bb0130) 2019; 17 Zhao (10.1016/j.tibtech.2025.03.001_bb0050) 2021; 39 Sun (10.1016/j.tibtech.2025.03.001_bb0070) 2022; 30 Tong (10.1016/j.tibtech.2025.03.001_bb0205) 2024; 15 Kurt (10.1016/j.tibtech.2025.03.001_bb0020) 2021; 39 Qin (10.1016/j.tibtech.2025.03.001_bb0225) 2020; 8 Yang (10.1016/j.tibtech.2025.03.001_bb0080) 2023; 14 Clarke (10.1016/j.tibtech.2025.03.001_bb0255) 2009; 2009 Li (10.1016/j.tibtech.2025.03.001_bb0270) 2009; 25 Wilm (10.1016/j.tibtech.2025.03.001_bb0280) 2012; 40 Hu (10.1016/j.tibtech.2025.03.001_bb0250) 2016; 6 Chen (10.1016/j.tibtech.2025.03.001_bb0055) 2022; 5 Wang (10.1016/j.tibtech.2025.03.001_bb0230) 2023; 11 Yu (10.1016/j.tibtech.2025.03.001_bb0220) 2024; 5 Bae (10.1016/j.tibtech.2025.03.001_bb0295) 2014; 30 Sretenovic (10.1016/j.tibtech.2025.03.001_bb0100) 2021; 3 Komor (10.1016/j.tibtech.2025.03.001_bb0045) 2016; 533 Bai (10.1016/j.tibtech.2025.03.001_bb0240) 2024; 17 Ye (10.1016/j.tibtech.2025.03.001_bb0040) 2024; 42 Liu (10.1016/j.tibtech.2025.03.001_bb0145) 2019; 62 Lee (10.1016/j.tibtech.2025.03.001_bb0115) 2023; 66 Bai (10.1016/j.tibtech.2025.03.001_bb0180) 2020; 18 Li (10.1016/j.tibtech.2025.03.001_bb0170) 2021; 14 Wang (10.1016/j.tibtech.2025.03.001_bb0120) 2023; 10 Tian (10.1016/j.tibtech.2025.03.001_bb0105) 2022; 20 Fan (10.1016/j.tibtech.2025.03.001_bb0215) 2024; 15 Chen (10.1016/j.tibtech.2025.03.001_bb0165) 2023; 41 Wu (10.1016/j.tibtech.2025.03.001_bb0210) 2025 Dong (10.1016/j.tibtech.2025.03.001_bb0075) 2022; 40 Yuan (10.1016/j.tibtech.2025.03.001_bb0065) 2021; 12 Jin (10.1016/j.tibtech.2025.03.001_bb0175) 2019; 364 Li (10.1016/j.tibtech.2025.03.001_bb0190) 2024; 25 McKenna (10.1016/j.tibtech.2025.03.001_bb0275) 2010; 20 He (10.1016/j.tibtech.2025.03.001_bb0030) 2024; 84 LeBlanc (10.1016/j.tibtech.2025.03.001_bb0125) 2018; 93 Clement (10.1016/j.tibtech.2025.03.001_bb0260) 2019; 37 Neugebauer (10.1016/j.tibtech.2025.03.001_bb0160) 2023; 41 Anzalone (10.1016/j.tibtech.2025.03.001_bb0005) 2020; 38 Li (10.1016/j.tibtech.2025.03.001_bb0185) 2022; 23 |
References_xml | – volume: 12 start-page: 4902 year: 2021 ident: bb0065 article-title: Optimization of C-to-G base editors with sequence context preference predictable by machine learning methods publication-title: Nat. Commun. – volume: 2 year: 2021 ident: bb0235 article-title: High-efficiency genome editing in plants mediated by a Cas9 gene containing multiple introns publication-title: Plant Commun. – volume: 25 start-page: 1754 year: 2009 end-page: 1760 ident: bb0270 article-title: Fast and accurate short read alignment with Burrows–Wheeler transform publication-title: Bioinformatics – volume: 40 year: 2022 ident: bb0075 article-title: Enhancing glycosylase base-editor activity by fusion to transactivation modules publication-title: Cell Rep. – volume: 2009 start-page: 5177 year: 2009 ident: bb0255 article-title: Cetyltrimethyl ammonium bromide (CTAB) DNA Miniprep for plant DNA isolation publication-title: Cold Spring Harb Protoc – volume: 13 start-page: 1666 year: 2020 end-page: 1669 ident: bb0155 article-title: PhieCBEs: plant high-efficiency cytidine base editors with expanded target range publication-title: Mol. Plant – volume: 41 start-page: 673 year: 2023 end-page: 685 ident: bb0160 article-title: Evolution of an adenine base editor into a small, efficient cytosine base editor with low off-target activity publication-title: Nat. Biotechnol. – volume: 19 start-page: 2052 year: 2021 end-page: 2068 ident: bb0150 article-title: Improved plant cytosine base editors with high editing activity, purity, and specificity publication-title: Plant Biotechnol. J. – volume: 84 start-page: 1257 year: 2024 end-page: 1270 ident: bb0030 article-title: Protein language models-assisted optimization of a uracil-N-glycosylase variant enables programmable T-to-G and T-to-C base editing publication-title: Mol. Cell – volume: 15 start-page: 591 year: 2018 end-page: 594 ident: bb0285 article-title: Strelka2: fast and accurate calling of germline and somatic variants publication-title: Nat. Methods – volume: 20 start-page: 1297 year: 2010 end-page: 1303 ident: bb0275 article-title: The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data publication-title: Genome Res. – volume: 65 start-page: 2328 year: 2022 end-page: 2331 ident: bb0135 article-title: Improving the efficiency of prime editing with epegRNAs and high-temperature treatment in rice publication-title: Sci. China Life Sci. – volume: 23 start-page: 161 year: 2022 ident: bb0185 article-title: Development of a highly efficient prime editor 2 system in plants publication-title: Genome Biol. – volume: 93 start-page: 377 year: 2018 end-page: 386 ident: bb0125 article-title: Increased efficiency of targeted mutagenesis by CRISPR/Cas9 in plants using heat stress publication-title: Plant J. – volume: 43 start-page: 8452 year: 2015 end-page: 8463 ident: bb0200 article-title: A unique uracil-DNA binding protein of the uracil DNA glycosylase superfamily publication-title: Nucleic Acids Res. – volume: 42 start-page: 1538 year: 2024 end-page: 1547 ident: bb0040 article-title: Glycosylase-based base editors for efficient T-to-G and C-to-G editing in mammalian cells publication-title: Nat. Biotechnol. – volume: 17 start-page: 9 year: 2019 ident: bb0130 article-title: Application of CRISPR-Cas12a temperature sensitivity for improved genome editing in rice, maize, and Arabidopsis publication-title: BMC Biol. – volume: 30 start-page: 2452 year: 2022 end-page: 2463 ident: bb0070 article-title: Reconstructed glycosylase base editors GBE2.0 with enhanced C-to-G base editing efficiency and purity publication-title: Mol. Ther. – volume: 3 year: 2021 ident: bb0100 article-title: Exploring C-To-G base editing in rice, tomato, and poplar publication-title: Front. Genome Ed. – volume: 127 start-page: 399 year: 2000 end-page: 410 ident: bb0195 article-title: Purification and characterization of a cold-adapted uracil-DNA glycosylase from Atlantic cod (Gadus morhua) publication-title: Comp. Biochem. Physiol. B – volume: 5 start-page: 389 year: 2022 end-page: 396 ident: bb0055 article-title: Efficient C-to-G base editing with improved target compatibility using engineered deaminase–nCas9 fusions publication-title: CRISPR J. – volume: 14 start-page: 2430 year: 2023 ident: bb0080 article-title: HMGN1 enhances CRISPR-directed dual-function A-to-G and C-to-G base editing publication-title: Nat. Commun. – volume: 39 start-page: 41 year: 2021 end-page: 46 ident: bb0020 article-title: CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells publication-title: Nat. Biotechnol. – volume: 16 start-page: 431 year: 2020 end-page: 457 ident: bb0290 article-title: An unbiased method for evaluating the genome-wide specificity of base editors in rice publication-title: Nat. Protoc. – volume: 15 start-page: 4897 year: 2024 ident: bb0205 article-title: Development of deaminase-free T-to-S base editor and C-to-G base editor by engineered human uracil DNA glycosylase publication-title: Nat. Commun. – volume: 25 start-page: 131 year: 2024 ident: bb0265 article-title: Conditional knockdown of OsMLH1 to improve plant prime editing systems without disturbing fertility in rice publication-title: Genome Biol. – volume: 41 start-page: 663 year: 2023 end-page: 672 ident: bb0165 article-title: Re-engineering the adenine deaminase TadA-8e for efficient and specific CRISPR-based cytosine base editing publication-title: Nat. Biotechnol. – volume: 20 start-page: 1238 year: 2022 end-page: 1240 ident: bb0105 article-title: Efficient C-to-G editing in rice using an optimized base editor publication-title: Plant Biotechnol. J. – volume: 6 year: 2016 ident: bb0250 article-title: Plant phosphomannose isomerase as a selectable marker for rice transformation publication-title: Sci. Rep. – volume: 30 start-page: 1473 year: 2014 end-page: 1475 ident: bb0295 article-title: Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases publication-title: Bioinformatics – volume: 65 start-page: 444 year: 2023 end-page: 467 ident: bb0095 article-title: Plant base editing and prime editing: the current status and future perspectives publication-title: J. Integr. Plant Biol. – volume: 18 start-page: 721 year: 2020 end-page: 731 ident: bb0180 article-title: Generation of a multiplex mutagenesis population via pooled CRISPR-Cas9 in soya bean publication-title: Plant Biotechnol. J. – volume: 5 year: 2024 ident: bb0220 article-title: Diverse nucleotide substitutions in rice base editing mediated by novel TadA variants publication-title: Plant Commun. – volume: 38 start-page: 824 year: 2020 end-page: 844 ident: bb0005 article-title: Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors publication-title: Nat. Biotechnol. – volume: 62 start-page: 1 year: 2019 end-page: 7 ident: bb0145 article-title: Hi-TOM: a platform for high-throughput tracking of mutations induced by CRISPR/Cas systems publication-title: Sci. China Life Sci. – volume: 41 start-page: 1080 year: 2023 end-page: 1084 ident: bb0025 article-title: Programmable A-to-Y base editing by fusing an adenine base editor with an N-methylpurine DNA glycosylase publication-title: Nat. Biotechnol. – volume: 39 start-page: 1414 year: 2021 end-page: 1425 ident: bb0060 article-title: Efficient C•G-to-G•C base editors developed using CRISPRi screens, target-library analysis, and machine learning publication-title: Nat. Biotechnol. – volume: 14 start-page: 352 year: 2021 end-page: 360 ident: bb0170 article-title: Genome editing mediated by SpCas9 variants with broad non-canonical PAM compatibility in plants publication-title: Mol. Plant – volume: 23 start-page: 7990 year: 2022 ident: bb0110 article-title: Exploring C-to-G and A-to-Y base editing in rice by using new vector tools publication-title: Int. J. Mol. Sci. – volume: 15 start-page: 5103 year: 2024 ident: bb0215 article-title: High performance TadA-8e derived cytosine and dual base editors with undetectable off-target effects in plants publication-title: Nat. Commun. – volume: 11 start-page: 1451 year: 2023 end-page: 1457 ident: bb0230 article-title: Development of plant cytosine base editors with the Cas12a system publication-title: Crop J. – volume: 40 start-page: 11189 year: 2012 end-page: 11201 ident: bb0280 article-title: LoFreq: a sequence-quality aware, ultra-sensitive variant caller for uncovering cell-population heterogeneity from high-throughput sequencing datasets publication-title: Nucleic Acids Res. – volume: 12 start-page: 1384 year: 2021 ident: bb0015 article-title: Programmable C:G to G:C genome editing with CRISPR-Cas9-directed base excision repair proteins publication-title: Nat. Commun. – volume: 39 start-page: 35 year: 2021 end-page: 40 ident: bb0050 article-title: Glycosylase base editors enable C-to-A and C-to-G base changes publication-title: Nat. Biotechnol. – year: 2025 ident: bb0210 article-title: Targeted deaminase-free T-to-G and C-to-K base editing in rice by fused human uracil DNA glycosylase variants publication-title: Plant Biotechnol. J. – volume: 6 start-page: 73 year: 2002 end-page: 86 ident: bb0140 article-title: Identification, cloning, and expression of uracil-DNA glycosylase from Atlantic cod ( publication-title: Extremophiles – volume: 9 year: 2022 ident: bb0085 article-title: Pioneer factor improves CRISPR-based C-To-G and C-To-T base editing publication-title: Adv. Sci. – volume: 66 start-page: 18 year: 2023 ident: bb0115 article-title: Application of CRISPR-based C-to-G base editing in rice protoplasts publication-title: Appl. Biol. Chem. – volume: 25 start-page: 603 year: 2024 end-page: 622 ident: bb0190 article-title: Targeted genome-modification tools and their advanced applications in crop breeding publication-title: Nat. Rev. Genet. – volume: 17 start-page: 363 year: 2024 end-page: 366 ident: bb0240 article-title: Expressing a human RNA demethylase as an assister improves gene-editing efficiency in plants publication-title: Mol. Plant – volume: 10 start-page: 143 year: 2023 ident: bb0035 article-title: Programmable deaminase-free base editors for G-to-Y conversion by engineered glycosylase publication-title: Natl. Sci. Rev. – volume: 533 start-page: 420 year: 2016 end-page: 424 ident: bb0045 article-title: Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage publication-title: Nature – volume: 8 start-page: 396 year: 2020 end-page: 402 ident: bb0225 article-title: Increasing fidelity and efficiency by modifying cytidine base-editing systems in rice publication-title: Crop J. – volume: 7 start-page: 1166 year: 2021 end-page: 1187 ident: bb0090 article-title: Precise plant genome editing using base editors and prime editors publication-title: Nat. Plants – volume: 37 start-page: 224 year: 2019 end-page: 226 ident: bb0260 article-title: CRISPResso2 provides accurate and rapid genome editing sequence analysis publication-title: Nat. Biotechnol. – volume: 14 start-page: 1 year: 2014 end-page: 12 ident: bb0245 article-title: A CRISPR/Cas9 toolkit for multiplex genome editing in plants publication-title: BMC Plant Biol. – volume: 186 start-page: 3182 year: 2023 end-page: 3195 ident: bb0010 article-title: Discovery of deaminase functions by structure-based protein clustering publication-title: Cell – volume: 364 start-page: 292 year: 2019 end-page: 295 ident: bb0175 article-title: Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice publication-title: Science – volume: 10 start-page: 155 year: 2023 ident: bb0120 article-title: Developing a highly efficient CGBE base editor in watermelon publication-title: Hortic. Res. – volume: 23 start-page: 7990 year: 2022 ident: 10.1016/j.tibtech.2025.03.001_bb0110 article-title: Exploring C-to-G and A-to-Y base editing in rice by using new vector tools publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms23147990 – volume: 20 start-page: 1297 year: 2010 ident: 10.1016/j.tibtech.2025.03.001_bb0275 article-title: The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data publication-title: Genome Res. doi: 10.1101/gr.107524.110 – volume: 14 start-page: 352 year: 2021 ident: 10.1016/j.tibtech.2025.03.001_bb0170 article-title: Genome editing mediated by SpCas9 variants with broad non-canonical PAM compatibility in plants publication-title: Mol. Plant doi: 10.1016/j.molp.2020.12.017 – volume: 14 start-page: 2430 year: 2023 ident: 10.1016/j.tibtech.2025.03.001_bb0080 article-title: HMGN1 enhances CRISPR-directed dual-function A-to-G and C-to-G base editing publication-title: Nat. Commun. doi: 10.1038/s41467-023-38193-2 – volume: 84 start-page: 1257 year: 2024 ident: 10.1016/j.tibtech.2025.03.001_bb0030 article-title: Protein language models-assisted optimization of a uracil-N-glycosylase variant enables programmable T-to-G and T-to-C base editing publication-title: Mol. Cell doi: 10.1016/j.molcel.2024.01.021 – volume: 43 start-page: 8452 year: 2015 ident: 10.1016/j.tibtech.2025.03.001_bb0200 article-title: A unique uracil-DNA binding protein of the uracil DNA glycosylase superfamily publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv854 – volume: 38 start-page: 824 year: 2020 ident: 10.1016/j.tibtech.2025.03.001_bb0005 article-title: Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors publication-title: Nat. Biotechnol. doi: 10.1038/s41587-020-0561-9 – volume: 65 start-page: 2328 year: 2022 ident: 10.1016/j.tibtech.2025.03.001_bb0135 article-title: Improving the efficiency of prime editing with epegRNAs and high-temperature treatment in rice publication-title: Sci. China Life Sci. doi: 10.1007/s11427-022-2147-2 – volume: 66 start-page: 18 year: 2023 ident: 10.1016/j.tibtech.2025.03.001_bb0115 article-title: Application of CRISPR-based C-to-G base editing in rice protoplasts publication-title: Appl. Biol. Chem. doi: 10.1186/s13765-023-00775-5 – volume: 3 year: 2021 ident: 10.1016/j.tibtech.2025.03.001_bb0100 article-title: Exploring C-To-G base editing in rice, tomato, and poplar publication-title: Front. Genome Ed. doi: 10.3389/fgeed.2021.756766 – volume: 13 start-page: 1666 year: 2020 ident: 10.1016/j.tibtech.2025.03.001_bb0155 article-title: PhieCBEs: plant high-efficiency cytidine base editors with expanded target range publication-title: Mol. Plant doi: 10.1016/j.molp.2020.11.001 – volume: 40 start-page: 11189 year: 2012 ident: 10.1016/j.tibtech.2025.03.001_bb0280 article-title: LoFreq: a sequence-quality aware, ultra-sensitive variant caller for uncovering cell-population heterogeneity from high-throughput sequencing datasets publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks918 – volume: 37 start-page: 224 year: 2019 ident: 10.1016/j.tibtech.2025.03.001_bb0260 article-title: CRISPResso2 provides accurate and rapid genome editing sequence analysis publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0032-3 – volume: 41 start-page: 673 year: 2023 ident: 10.1016/j.tibtech.2025.03.001_bb0160 article-title: Evolution of an adenine base editor into a small, efficient cytosine base editor with low off-target activity publication-title: Nat. Biotechnol. doi: 10.1038/s41587-022-01533-6 – volume: 15 start-page: 5103 year: 2024 ident: 10.1016/j.tibtech.2025.03.001_bb0215 article-title: High performance TadA-8e derived cytosine and dual base editors with undetectable off-target effects in plants publication-title: Nat. Commun. doi: 10.1038/s41467-024-49473-w – volume: 9 year: 2022 ident: 10.1016/j.tibtech.2025.03.001_bb0085 article-title: Pioneer factor improves CRISPR-based C-To-G and C-To-T base editing publication-title: Adv. Sci. doi: 10.1002/advs.202202957 – volume: 39 start-page: 35 year: 2021 ident: 10.1016/j.tibtech.2025.03.001_bb0050 article-title: Glycosylase base editors enable C-to-A and C-to-G base changes publication-title: Nat. Biotechnol. doi: 10.1038/s41587-020-0592-2 – volume: 20 start-page: 1238 year: 2022 ident: 10.1016/j.tibtech.2025.03.001_bb0105 article-title: Efficient C-to-G editing in rice using an optimized base editor publication-title: Plant Biotechnol. J. doi: 10.1111/pbi.13841 – volume: 18 start-page: 721 year: 2020 ident: 10.1016/j.tibtech.2025.03.001_bb0180 article-title: Generation of a multiplex mutagenesis population via pooled CRISPR-Cas9 in soya bean publication-title: Plant Biotechnol. J. doi: 10.1111/pbi.13239 – volume: 2 year: 2021 ident: 10.1016/j.tibtech.2025.03.001_bb0235 article-title: High-efficiency genome editing in plants mediated by a Cas9 gene containing multiple introns publication-title: Plant Commun. doi: 10.1016/j.xplc.2020.100135 – volume: 5 start-page: 389 year: 2022 ident: 10.1016/j.tibtech.2025.03.001_bb0055 article-title: Efficient C-to-G base editing with improved target compatibility using engineered deaminase–nCas9 fusions publication-title: CRISPR J. doi: 10.1089/crispr.2021.0124 – volume: 10 start-page: 155 year: 2023 ident: 10.1016/j.tibtech.2025.03.001_bb0120 article-title: Developing a highly efficient CGBE base editor in watermelon publication-title: Hortic. Res. doi: 10.1093/hr/uhad155 – volume: 15 start-page: 591 year: 2018 ident: 10.1016/j.tibtech.2025.03.001_bb0285 article-title: Strelka2: fast and accurate calling of germline and somatic variants publication-title: Nat. Methods doi: 10.1038/s41592-018-0051-x – volume: 8 start-page: 396 year: 2020 ident: 10.1016/j.tibtech.2025.03.001_bb0225 article-title: Increasing fidelity and efficiency by modifying cytidine base-editing systems in rice publication-title: Crop J. doi: 10.1016/j.cj.2019.04.007 – volume: 6 start-page: 73 year: 2002 ident: 10.1016/j.tibtech.2025.03.001_bb0140 article-title: Identification, cloning, and expression of uracil-DNA glycosylase from Atlantic cod (Gadus morhua): characterization and homology modeling of the cold-active catalytic domain publication-title: Extremophiles doi: 10.1007/s007920100225 – volume: 25 start-page: 131 year: 2024 ident: 10.1016/j.tibtech.2025.03.001_bb0265 article-title: Conditional knockdown of OsMLH1 to improve plant prime editing systems without disturbing fertility in rice publication-title: Genome Biol. doi: 10.1186/s13059-024-03282-y – volume: 533 start-page: 420 year: 2016 ident: 10.1016/j.tibtech.2025.03.001_bb0045 article-title: Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage publication-title: Nature doi: 10.1038/nature17946 – volume: 364 start-page: 292 year: 2019 ident: 10.1016/j.tibtech.2025.03.001_bb0175 article-title: Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice publication-title: Science doi: 10.1126/science.aaw7166 – volume: 17 start-page: 363 year: 2024 ident: 10.1016/j.tibtech.2025.03.001_bb0240 article-title: Expressing a human RNA demethylase as an assister improves gene-editing efficiency in plants publication-title: Mol. Plant doi: 10.1016/j.molp.2024.02.010 – volume: 15 start-page: 4897 year: 2024 ident: 10.1016/j.tibtech.2025.03.001_bb0205 article-title: Development of deaminase-free T-to-S base editor and C-to-G base editor by engineered human uracil DNA glycosylase publication-title: Nat. Commun. doi: 10.1038/s41467-024-49343-5 – volume: 30 start-page: 2452 year: 2022 ident: 10.1016/j.tibtech.2025.03.001_bb0070 article-title: Reconstructed glycosylase base editors GBE2.0 with enhanced C-to-G base editing efficiency and purity publication-title: Mol. Ther. doi: 10.1016/j.ymthe.2022.03.023 – volume: 62 start-page: 1 year: 2019 ident: 10.1016/j.tibtech.2025.03.001_bb0145 article-title: Hi-TOM: a platform for high-throughput tracking of mutations induced by CRISPR/Cas systems publication-title: Sci. China Life Sci. doi: 10.1007/s11427-018-9402-9 – volume: 23 start-page: 161 year: 2022 ident: 10.1016/j.tibtech.2025.03.001_bb0185 article-title: Development of a highly efficient prime editor 2 system in plants publication-title: Genome Biol. doi: 10.1186/s13059-022-02730-x – volume: 42 start-page: 1538 year: 2024 ident: 10.1016/j.tibtech.2025.03.001_bb0040 article-title: Glycosylase-based base editors for efficient T-to-G and C-to-G editing in mammalian cells publication-title: Nat. Biotechnol. doi: 10.1038/s41587-023-02050-w – year: 2025 ident: 10.1016/j.tibtech.2025.03.001_bb0210 article-title: Targeted deaminase-free T-to-G and C-to-K base editing in rice by fused human uracil DNA glycosylase variants publication-title: Plant Biotechnol. J. doi: 10.1111/pbi.14583 – volume: 11 start-page: 1451 year: 2023 ident: 10.1016/j.tibtech.2025.03.001_bb0230 article-title: Development of plant cytosine base editors with the Cas12a system publication-title: Crop J. doi: 10.1016/j.cj.2023.03.002 – volume: 7 start-page: 1166 year: 2021 ident: 10.1016/j.tibtech.2025.03.001_bb0090 article-title: Precise plant genome editing using base editors and prime editors publication-title: Nat. Plants doi: 10.1038/s41477-021-00991-1 – volume: 40 year: 2022 ident: 10.1016/j.tibtech.2025.03.001_bb0075 article-title: Enhancing glycosylase base-editor activity by fusion to transactivation modules publication-title: Cell Rep. doi: 10.1016/j.celrep.2022.111090 – volume: 41 start-page: 1080 year: 2023 ident: 10.1016/j.tibtech.2025.03.001_bb0025 article-title: Programmable A-to-Y base editing by fusing an adenine base editor with an N-methylpurine DNA glycosylase publication-title: Nat. Biotechnol. doi: 10.1038/s41587-022-01595-6 – volume: 5 year: 2024 ident: 10.1016/j.tibtech.2025.03.001_bb0220 article-title: Diverse nucleotide substitutions in rice base editing mediated by novel TadA variants publication-title: Plant Commun. doi: 10.1016/j.xplc.2024.100926 – volume: 186 start-page: 3182 year: 2023 ident: 10.1016/j.tibtech.2025.03.001_bb0010 article-title: Discovery of deaminase functions by structure-based protein clustering publication-title: Cell doi: 10.1016/j.cell.2023.05.041 – volume: 30 start-page: 1473 year: 2014 ident: 10.1016/j.tibtech.2025.03.001_bb0295 article-title: Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu048 – volume: 25 start-page: 603 year: 2024 ident: 10.1016/j.tibtech.2025.03.001_bb0190 article-title: Targeted genome-modification tools and their advanced applications in crop breeding publication-title: Nat. Rev. Genet. doi: 10.1038/s41576-024-00720-2 – volume: 2009 start-page: 5177 year: 2009 ident: 10.1016/j.tibtech.2025.03.001_bb0255 article-title: Cetyltrimethyl ammonium bromide (CTAB) DNA Miniprep for plant DNA isolation publication-title: Cold Spring Harb Protoc doi: 10.1101/pdb.prot5177 – volume: 19 start-page: 2052 year: 2021 ident: 10.1016/j.tibtech.2025.03.001_bb0150 article-title: Improved plant cytosine base editors with high editing activity, purity, and specificity publication-title: Plant Biotechnol. J. doi: 10.1111/pbi.13635 – volume: 12 start-page: 1384 year: 2021 ident: 10.1016/j.tibtech.2025.03.001_bb0015 article-title: Programmable C:G to G:C genome editing with CRISPR-Cas9-directed base excision repair proteins publication-title: Nat. Commun. doi: 10.1038/s41467-021-21559-9 – volume: 39 start-page: 41 year: 2021 ident: 10.1016/j.tibtech.2025.03.001_bb0020 article-title: CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells publication-title: Nat. Biotechnol. doi: 10.1038/s41587-020-0609-x – volume: 12 start-page: 4902 year: 2021 ident: 10.1016/j.tibtech.2025.03.001_bb0065 article-title: Optimization of C-to-G base editors with sequence context preference predictable by machine learning methods publication-title: Nat. Commun. doi: 10.1038/s41467-021-25217-y – volume: 93 start-page: 377 year: 2018 ident: 10.1016/j.tibtech.2025.03.001_bb0125 article-title: Increased efficiency of targeted mutagenesis by CRISPR/Cas9 in plants using heat stress publication-title: Plant J. doi: 10.1111/tpj.13782 – volume: 16 start-page: 431 year: 2020 ident: 10.1016/j.tibtech.2025.03.001_bb0290 article-title: An unbiased method for evaluating the genome-wide specificity of base editors in rice publication-title: Nat. Protoc. doi: 10.1038/s41596-020-00423-y – volume: 14 start-page: 1 year: 2014 ident: 10.1016/j.tibtech.2025.03.001_bb0245 article-title: A CRISPR/Cas9 toolkit for multiplex genome editing in plants publication-title: BMC Plant Biol. doi: 10.1186/s12870-014-0327-y – volume: 127 start-page: 399 year: 2000 ident: 10.1016/j.tibtech.2025.03.001_bb0195 article-title: Purification and characterization of a cold-adapted uracil-DNA glycosylase from Atlantic cod (Gadus morhua) publication-title: Comp. Biochem. Physiol. B doi: 10.1016/S0305-0491(00)00271-6 – volume: 10 start-page: 143 year: 2023 ident: 10.1016/j.tibtech.2025.03.001_bb0035 article-title: Programmable deaminase-free base editors for G-to-Y conversion by engineered glycosylase publication-title: Natl. Sci. Rev. doi: 10.1093/nsr/nwad143 – volume: 39 start-page: 1414 year: 2021 ident: 10.1016/j.tibtech.2025.03.001_bb0060 article-title: Efficient C•G-to-G•C base editors developed using CRISPRi screens, target-library analysis, and machine learning publication-title: Nat. Biotechnol. doi: 10.1038/s41587-021-00938-z – volume: 17 start-page: 9 year: 2019 ident: 10.1016/j.tibtech.2025.03.001_bb0130 article-title: Application of CRISPR-Cas12a temperature sensitivity for improved genome editing in rice, maize, and Arabidopsis publication-title: BMC Biol. doi: 10.1186/s12915-019-0629-5 – volume: 25 start-page: 1754 year: 2009 ident: 10.1016/j.tibtech.2025.03.001_bb0270 article-title: Fast and accurate short read alignment with Burrows–Wheeler transform publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp324 – volume: 41 start-page: 663 year: 2023 ident: 10.1016/j.tibtech.2025.03.001_bb0165 article-title: Re-engineering the adenine deaminase TadA-8e for efficient and specific CRISPR-based cytosine base editing publication-title: Nat. Biotechnol. doi: 10.1038/s41587-022-01532-7 – volume: 65 start-page: 444 year: 2023 ident: 10.1016/j.tibtech.2025.03.001_bb0095 article-title: Plant base editing and prime editing: the current status and future perspectives publication-title: J. Integr. Plant Biol. doi: 10.1111/jipb.13425 – volume: 6 year: 2016 ident: 10.1016/j.tibtech.2025.03.001_bb0250 article-title: Plant phosphomannose isomerase as a selectable marker for rice transformation publication-title: Sci. Rep. |
SSID | ssj0003791 |
Score | 2.4809577 |
Snippet | A cod uracil DNA glycosylase from the cold-adapted organism Gadus morhua enhanced cytosine (C)-to-guanine (G) base editor (CGBE) activities in... HighlightsA cod uracil DNA glycosylase from the cold-adapted organism Gadus morhua enhanced cytosine (C)-to-guanine (G) base editor (CGBE) activities in rice.... Plant cytosine (C)-to-guanine (G) base editors (CGBEs) have been established but suffer from limited editing efficiencies and low outcome purities. This study... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1765 |
SubjectTerms | Adenine Animals base editing Cold Temperature CRISPR CRISPR-Cas Systems Cytidine Deaminase - genetics Cytidine Deaminase - metabolism Cytosine Cytosine - metabolism DNA glycosylase Editing Efficiency Enzymes Gene Editing - methods Gene sequencing Genomic analysis Glycosylation Guanine - metabolism Humans Internal Medicine Mutation Oryza - genetics Plant breeding plants Plants, Genetically Modified - genetics Proteins Soybeans TadA variants Tobacco UNG Uracil Uracil-DNA glycosidase Uracil-DNA Glycosidase - genetics Uracil-DNA Glycosidase - metabolism Whole genome sequencing |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKe4AeEJTXQkFG4moax3bsHBAqq5aKwwqhVtqb5VeQqlWysNtK_ffMJHHKgQLnjJ1oPJn5xh7PR8i7mCAqxiCYUzIyCSGP1c4HZlJoRJM097EvkF1UZxfyy1Itd8gi34XBssrsE3tHHbuAe-RHYHhVBWBBiY_rHwxZo_B0NVNouJFaIX7oW4zdI3vgkg3Y_d6nk8XXb5NvFnrg0MNu31rX9e2dnqNLiBEeG6dC0liqofMpvyta3YVG-6h0-og8HOEkPR7W_zHZSe0BuT_PLG4HZP-3hoNPyHLaQ6DrFeiUztm2Y58pxjIKYQypdyhuzVJHwUIic9GtAZPS76ub0G1uVijn2kjPXTwGTdNrSLWxkuYpuTg9OZ-fsZFbgQWpyi1rSukEj2XjIGdoONdeBEhMTRWESijiOffSeKMBsCgHOKhWWqjCS-WKhhfiGdltuza9INSIIlTGOVFLL2Ee07haqYgHiFo3ppyR91mHdj200LC5tuzSjkq3qHRbCKyxm5Eqa9rm-6Hg0Sw4-X8N1H8amDbjf7mx3G5KW2BJW6Vx_UvVJ3Uw0kwjR-gxQIr_eelhNgY7vefWWmfk7fQYlh6PY1ybuiuQwV6CCHhB5vlgRJN-JHIl1oK__Pvkr8gD_JKhfPiQ7G5_XqXXAJK2_s1o-b8Au6ENuA priority: 102 providerName: ProQuest |
Title | Improving plant C-to-G base editors with a cold-adapted glycosylase and TadA-8e variants |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0167779925000861 https://www.clinicalkey.es/playcontent/1-s2.0-S0167779925000861 https://dx.doi.org/10.1016/j.tibtech.2025.03.001 https://www.ncbi.nlm.nih.gov/pubmed/40187931 https://www.proquest.com/docview/3226652253 https://www.proquest.com/docview/3186785113 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-N7gF4QDC-CmMyEq9e49iOncdSrStUqtDYRN8sO07QpqqtaIe0F_527poPQDCBeHGUxI6Ty_nud_b5DuBNLFErxkJyr1XkClUez30ouC2LSlalESHuHGRn2eRCvZ_r-R6M2r0w5FbZyP5apu-kdXNl0FBzsL68HHwkB3pj8jzVO2COJtB-KvNM92B_-G46mXUCWZo6cR6F-KYGPzbyDK5QMQSKloqWYqrrcKfiNhV1GwTdqaLxQ3jQYEg2rF_zEeyVywO4O2pTtx3A_Z-iDD6GeTdxwNYLJCQb8e2KnzJSYAy_n_LtMJqPZZ4hW0Tuo18jEGWfFzfFanOzoHp-Gdm5j0MkL_uK9jW5zzyBi_HJ-WjCm4QKvFA63fIqVV6KmFYeDYVKCBNkgdaozQqpS6oShAjKBmsQpWiP4CfXRuokKO2TSiTyKfSWq2X5HJiVSZFZ72WugsLn2MrnWkdaNTSmsmkfjlsaunUdN8O1DmVXriG6I6K7RJJjXR-yltKu3RSKYsyhZP9bQ_OnhuWmGYwbJ9wmdYn7jWH6YLuWv_Dcv3R62DKD6_pB2ZhliGe17MPr7jb-elqD8ctydY11KIAgoVys86xmoo4-ihIk5lK8-P_3egn36Kz2Jz6E3vbLdfkKUdM2HMGd428CSzM3WNrx6VEzTug4Pfs0xePbk9mHs-8rDBir |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKeigcEJRXoICR4Gi6Xtvr3UOFSmhJaYkQSqXcXHvtRaqi3cCmoPw5fhsz2Uc5UODSc2xvNDP29409D0Je-gCo6HPBrJKeSYA8llmXszTkhSiC5s6vA2QnyfhUfpip2Qb52eXCYFhldyauD2pf5XhHvguGlyRAFpR4s_jKsGsUvq52LTRs21rB761LjLWJHcdh9QNcuHrv6B3o-1UcHx5MR2PWdhlguVTxkhWxtIL7uLDAngvOtRM5uGhpkgsVcIjj3MnUpRqgW1lgBJnSQkVOKhsVPBKw7g2yKTHDdUA23x5MPn3usUDopmcfVhfXOssuc4h2zwGTHBZqBSc1Vk2lVX4VOl7FftcoeHiH3G7pK91v7O0u2QjlNtkadV3jtsmt3woc3iOz_s6CLuagQzpiy4q9p4idFGATW_1QvAqmloJFema9XQAHpl_mq7yqV3McZ0tPp9bvg2bpd3DtMXLnPjm9Fik_IIOyKsMjQlMR5Ulqrcikk7BOWthMKY8PlloXaTwkrzsZmkVTssN0sWznphW6QaGbSGBM35AknaRNl48KJ6gBUPnXRP2niaFuz4HacFPHJsIQukSj_mO1diJhZtrPbKlOQ2H-56M7nTGY_juXu2NIXvQ_g-rx-ceWobqAMVi7EAk2jHnYGFEvH4m9GTPBH_998edkazz9eGJOjibHT8hN_FdN6PIOGSy_XYSnQNCW7lm7Cyg5u-6N9wva6Efp |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVuJxQFBeCwWMBEezcWzHyaFCZdulpWhVoVbam2vHDlK1ShayBe1f5Fcxs3mUAwUuPcePaGbs7xt7PEPIax8AFX0umFXSMwmQxzLrcpaGvBBF0Nz5dYDsNDk4lR9narZBfnZvYTCsstsT1xu1r3I8Ix-B4SUJkAUlRkUbFnG8N3m3-MqwghTetHblNGxbZsHvrNONtY88jsLqB7hz9c7hHuj-TRxP9k_GB6ytOMByqeIlK2JpBfdxYYFJF5xrJ3Jw19IkFypgE8e5k6lLNcC4ssAOMqWFipxUNip4JGDcG2RTA0rKAdl8vz89_tzjgtBN_T7MNK51ll2-JxqdAz45TNoKDmusmqyr_CqkvIoJrxFxco_cbaks3W1s7z7ZCOUWuTXuKshtkTu_JTt8QGb9-QVdzEGfdMyWFftAEUcpQCiW_aF4LEwtBev0zHq7AD5Mv8xXeVWv5tjOlp6eWL8LWqbfwc3HKJ6H5PRapPyIDMqqDE8ITUWUJ6m1IpNOwjhpYTOlPF5eal2k8ZC87WRoFk36DtPFtZ2bVugGhW4igfF9Q5J0kjbd21TYTQ0AzL866j91DHW7J9SGmzo2EYbTJRr1H6u1Qwk9075nS3saOvM_k253xmD6eS5XypC86j-D6vEqyJahuoA2mMcQyTa0edwYUS8fiXUaM8Gf_n3wl-QmLEDz6XB69Izcxp9qopi3yWD57SI8B662dC_aRUDJ2XWvu19QREwV |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+plant+C-to-G+base+editors+with+a+cold-adapted+glycosylase+and+TadA-8e+variants&rft.jtitle=Trends+in+biotechnology+%28Regular+ed.%29&rft.au=Jiang%2C+Yingli+%28%E8%92%8B%E8%BF%8E%E5%88%A9%29&rft.au=Xiao%2C+Zhi+%28%E8%82%96%E5%BF%97%29&rft.au=Luo%2C+Zhaopeng+%28%E7%BD%97%E6%9C%9D%E9%B9%8F%29&rft.au=Zhou%2C+Suhuai+%28%E5%91%A8%E8%8B%8F%E6%B7%AE%29&rft.date=2025-07-01&rft.issn=0167-7799&rft.volume=43&rft.issue=7&rft.spage=1765&rft.epage=1787&rft_id=info:doi/10.1016%2Fj.tibtech.2025.03.001&rft.externalDBID=ECK1-s2.0-S0167779925000861&rft.externalDocID=1_s2_0_S0167779925000861 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01677799%2FS0167779924X00086%2Fcov150h.gif |