Improving plant C-to-G base editors with a cold-adapted glycosylase and TadA-8e variants

A cod uracil DNA glycosylase from the cold-adapted organism Gadus morhua enhanced cytosine (C)-to-guanine (G) base editor (CGBE) activities in rice.TadA-8e-derived cytidine deaminase (TadA-CDc) variants enabled rice C-to-G conversions.CDc-CGBEco achieved highly efficient C-to-G editing in rice, soyb...

Full description

Saved in:
Bibliographic Details
Published inTrends in biotechnology (Regular ed.) Vol. 43; no. 7; pp. 1765 - 1787
Main Authors Jiang, Yingli, Xiao, Zhi, Luo, Zhaopeng, Zhou, Suhuai, Tong, Chaoyun, Jin, Shan, Liu, Xiaoshuang, Qin, Ruiying, Xu, Rongfang, Pan, Lang, Li, Juan, Wei, Pengcheng
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.07.2025
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0167-7799
1879-3096
1879-3096
DOI10.1016/j.tibtech.2025.03.001

Cover

More Information
Summary:A cod uracil DNA glycosylase from the cold-adapted organism Gadus morhua enhanced cytosine (C)-to-guanine (G) base editor (CGBE) activities in rice.TadA-8e-derived cytidine deaminase (TadA-CDc) variants enabled rice C-to-G conversions.CDc-CGBEco achieved highly efficient C-to-G editing in rice, soybean, and tobacco.No significant off-target effects of the base editors derived from TadA-CDc were detected in rice. Plant cytosine (C)-to-guanine (G) base editors (CGBEs) have been established but suffer from limited editing efficiencies and low outcome purities. This study engineered a cod uracil DNA glycosylase (cod UNG, coUNG) from the cold-adapted fish Gadus morhua for plant CGBE, demonstrating 1.71- to 2.54-fold increases in C-to-G editing efficiency compared with the CGBE using human UNG (hUNG). Further engineering took advantage of TadA-8e-derived cytidine deaminases (TadA-CDs). These variants induced C substitutions with efficiencies ranging from 26.28% to 30.82% in rice cells, whereas adenine (A) conversion was negligible. By integrating coUNG and TadA-CDc elements with SpCas9 nickase, the resulting CDc-CGBEco achieved pure C-to-G editing without byproducts in up to 52.08% of transgenic lines. Whole-genome sequencing (WGS) analysis revealed no significant off-target effects of the CDc-BEs in rice. In addition, CDc-CGBEco enabled precise C-to-G editing in soybean and tobacco. These engineered CGBEs enhanced editing efficiency, purity, and specificity, suggesting their broad potential for applications in scientific research and crop breeding. [Display omitted] CDc-CGBEco introduced in this study is currently at a Technology Readiness Level (TRL) of 5. Using CDc-CGBEco, we obtained C-to-G-edited T0 rice plants with improved agronomic traits, such as herbicide resistance; we also found germline transmission of pure C-to-G edits in T1 offspring in the field. However, several challenges remain. For instance, limited editing activity in tobacco suggests that the universal applicability of CDc-CGBEco needs to be enhanced. In addition, although whole-genome sequencing was conducted to assess off-target effects, more long-term monitoring and diverse condition evaluations are necessary to comprehensively verify the safety and stability of this technology. A series of uracil DNA glycosylases (UNG) and cytidine deaminases were screened for upgrading plant cytosine (C)-to-guanine (G) base editors (CGBE). An engineered CDc-CGBEco fusing with a cod UNG (coUNG) and a TadA-8e-derived cytidine deaminases (TadA-CDc) exhibited superior performance in C-to-G editing, showing reliable and heritable base editing in monocots and dicots.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0167-7799
1879-3096
1879-3096
DOI:10.1016/j.tibtech.2025.03.001