DNA intercalative potential of marketed drugs testing positive in in vitro cytogenetics assays

We have previously noted that the Physicians’ Desk Reference (PDR) contains over 80 instances in which a drug elicited a positive genotoxic response in one or more in vitro assays, despite having no obvious structural features predictive of covalent drug/DNA interactive potential or known mechanisti...

Full description

Saved in:
Bibliographic Details
Published inMutation research Vol. 609; no. 1; pp. 47 - 59
Main Authors Snyder, Ronald D., Ewing, Douglas, Hendry, Lawrence B.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 10.10.2006
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We have previously noted that the Physicians’ Desk Reference (PDR) contains over 80 instances in which a drug elicited a positive genotoxic response in one or more in vitro assays, despite having no obvious structural features predictive of covalent drug/DNA interactive potential or known mechanistic basis. Furthermore, in most cases, these drugs were “missed” by computational genotoxicity-predicting models such as DEREK, MCASE and TOPKAT. We have previously reported the application of a V79 cell-based model and a 3D DNA docking model for predicting non-covalent chemical/DNA interactions. Those studies suggested that molecules that are very widely structurally diverse may be capable of intercalating into DNA. To determine whether such non-covalent drug/DNA interactions might be involved in unexpected drug genotoxicity, we evaluated, using both models where possible, 56 marketed pharmaceuticals, 40 of which were reported as being clastogenic in in vitro cytogenetics assays (chromosome aberrations/mouse lymphoma assay). As seen before, the two approaches showed good concordance (62%) and 26 of the 40 (65%) drugs exhibiting in vitro clastogenicity were predicted as intercalators by one or both methods. This finding provides support for the hypothesis that non-covalent DNA interaction may be a common mechanism of clastogenicity for many drugs having no obvious structural alerts for covalent DNA interaction.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1383-5718
0027-5107
1879-3592
DOI:10.1016/j.mrgentox.2006.06.001