A Sparse and Spatially Constrained Generative Regression Model for fMRI Data Analysis

In this study, we present an advanced Bayesian framework for the analysis of functional magnetic resonance imaging (fMRI) data that simultaneously employs both spatial and sparse properties. The basic building block of our method is the general linear regression model that constitutes a well-known p...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 59; no. 1; pp. 58 - 67
Main Authors Oikonomou, Vangelis P., Blekas, Konstantinos, Astrakas, Loukas
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.01.2012
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this study, we present an advanced Bayesian framework for the analysis of functional magnetic resonance imaging (fMRI) data that simultaneously employs both spatial and sparse properties. The basic building block of our method is the general linear regression model that constitutes a well-known probabilistic approach. By treating regression coefficients as random variables, we can apply an enhanced Gibbs distribution function that captures spatial constrains and at the same time allows sparse representation of fMRI time series. The proposed scheme is described as a maximum a posteriori approach, where the known expectation maximization algorithm is applied offering closed-form update equations for the model parameters. We have demonstrated that our method produces improved performance and functional activation detection capabilities in both simulated data and real applications.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Conference-1
ObjectType-Feature-3
SourceType-Conference Papers & Proceedings-2
ISSN:0018-9294
1558-2531
DOI:10.1109/TBME.2010.2104321