Interleukin-6 and prostate cancer: Current developments and unsolved questions
Interleukin (IL)-6 is a pro-inflammatory cytokine that is expressed in prostate tumors and in the stromal tumor micro-enviroment. It is known to regulate proliferation, apoptosis, angiogenesis, and differentiation. The signaling pathway of Janus kinase and signal transducer and activator of transcri...
Saved in:
Published in | Molecular and cellular endocrinology Vol. 462; no. Pt A; pp. 25 - 30 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Ireland
Elsevier B.V
15.02.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Interleukin (IL)-6 is a pro-inflammatory cytokine that is expressed in prostate tumors and in the stromal tumor micro-enviroment. It is known to regulate proliferation, apoptosis, angiogenesis, and differentiation. The signaling pathway of Janus kinase and signal transducer and activator of transcription (STAT)3, which is activated by IL-6, is in the focus of scientific investigations for improved treatment approaches. Different effects of IL-6 and/or STAT3 on tumor cell growth have been observed in human and murine prostate cancer (PCa) models. Experimental therapies have been proposed in order to block the IL-6/STAT3 signaling pathway. In this context, the anti-IL-6 antibody siltuximab (CNTO 328) has been demonstrated to inhibit growth of prostate tumors in vitro and in vivo and delays progression towards castration resistance. However, clinically, the anti-IL-6 antibody was not successful as a monotherapy in phase II studies in patients with metastatic PCa. IL-6 is implicated in regulation of cellular stemness by increasing phosphorylation of STAT3. The cytokine has also a role in development of resistance to the non-steroidal anti-androgen enzalutamide. Endogenous inhibitors of IL-6 are suppressors of cytokine signaling and protein inhibitors of activated STAT. Although they inhibit signal transduction through STAT3, they may also exhibit anti-apoptotic effects. On the basis of complexity of IL-6 action in PCa, an individualized approach is needed to identify patients who will benefit from anti-IL-6 therapy in combination with standard treatments.
•IL-6 exerts oncogenic effects in most prostate cancers and activates multiple signaling pathways.•Therapeutic intervention is based on inhibition of IL-6 itself or the STAT3 pathway.•Translation of experimental therapy studies has a very limited success.•Future experimental anti-IL-6 and anti-STAT3 therapies may target stem cells. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ISSN: | 0303-7207 1872-8057 1872-8057 |
DOI: | 10.1016/j.mce.2017.03.012 |