Preliminary Study on the Diagnostic Performance of a Deep Learning System for Submandibular Gland Inflammation Using Ultrasonography Images
This study was performed to evaluate the diagnostic performance of deep learning systems using ultrasonography (USG) images of the submandibular glands (SMGs) in three different conditions: obstructive sialoadenitis, Sjögren’s syndrome (SjS), and normal glands. Fifty USG images with a confirmed diag...
Saved in:
Published in | Journal of clinical medicine Vol. 10; no. 19; p. 4508 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
29.09.2021
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study was performed to evaluate the diagnostic performance of deep learning systems using ultrasonography (USG) images of the submandibular glands (SMGs) in three different conditions: obstructive sialoadenitis, Sjögren’s syndrome (SjS), and normal glands. Fifty USG images with a confirmed diagnosis of obstructive sialoadenitis, 50 USG images with a confirmed diagnosis of SjS, and 50 USG images with no SMG abnormalities were included in the study. The training group comprised 40 obstructive sialoadenitis images, 40 SjS images, and 40 control images, and the test group comprised 10 obstructive sialoadenitis images, 10 SjS images, and 10 control images for deep learning analysis. The performance of the deep learning system was calculated and compared between two experienced radiologists. The sensitivity of the deep learning system in the obstructive sialoadenitis group, SjS group, and control group was 55.0%, 83.0%, and 73.0%, respectively, and the total accuracy was 70.3%. The sensitivity of the two radiologists was 64.0%, 72.0%, and 86.0%, respectively, and the total accuracy was 74.0%. This study revealed that the deep learning system was more sensitive than experienced radiologists in diagnosing SjS in USG images of two case groups and a group of healthy subjects in inflammation of SMGs. |
---|---|
AbstractList | This study was performed to evaluate the diagnostic performance of deep learning systems using ultrasonography (USG) images of the submandibular glands (SMGs) in three different conditions: obstructive sialoadenitis, Sjögren’s syndrome (SjS), and normal glands. Fifty USG images with a confirmed diagnosis of obstructive sialoadenitis, 50 USG images with a confirmed diagnosis of SjS, and 50 USG images with no SMG abnormalities were included in the study. The training group comprised 40 obstructive sialoadenitis images, 40 SjS images, and 40 control images, and the test group comprised 10 obstructive sialoadenitis images, 10 SjS images, and 10 control images for deep learning analysis. The performance of the deep learning system was calculated and compared between two experienced radiologists. The sensitivity of the deep learning system in the obstructive sialoadenitis group, SjS group, and control group was 55.0%, 83.0%, and 73.0%, respectively, and the total accuracy was 70.3%. The sensitivity of the two radiologists was 64.0%, 72.0%, and 86.0%, respectively, and the total accuracy was 74.0%. This study revealed that the deep learning system was more sensitive than experienced radiologists in diagnosing SjS in USG images of two case groups and a group of healthy subjects in inflammation of SMGs. This study was performed to evaluate the diagnostic performance of deep learning systems using ultrasonography (USG) images of the submandibular glands (SMGs) in three different conditions: obstructive sialoadenitis, Sjögren's syndrome (SjS), and normal glands. Fifty USG images with a confirmed diagnosis of obstructive sialoadenitis, 50 USG images with a confirmed diagnosis of SjS, and 50 USG images with no SMG abnormalities were included in the study. The training group comprised 40 obstructive sialoadenitis images, 40 SjS images, and 40 control images, and the test group comprised 10 obstructive sialoadenitis images, 10 SjS images, and 10 control images for deep learning analysis. The performance of the deep learning system was calculated and compared between two experienced radiologists. The sensitivity of the deep learning system in the obstructive sialoadenitis group, SjS group, and control group was 55.0%, 83.0%, and 73.0%, respectively, and the total accuracy was 70.3%. The sensitivity of the two radiologists was 64.0%, 72.0%, and 86.0%, respectively, and the total accuracy was 74.0%. This study revealed that the deep learning system was more sensitive than experienced radiologists in diagnosing SjS in USG images of two case groups and a group of healthy subjects in inflammation of SMGs.This study was performed to evaluate the diagnostic performance of deep learning systems using ultrasonography (USG) images of the submandibular glands (SMGs) in three different conditions: obstructive sialoadenitis, Sjögren's syndrome (SjS), and normal glands. Fifty USG images with a confirmed diagnosis of obstructive sialoadenitis, 50 USG images with a confirmed diagnosis of SjS, and 50 USG images with no SMG abnormalities were included in the study. The training group comprised 40 obstructive sialoadenitis images, 40 SjS images, and 40 control images, and the test group comprised 10 obstructive sialoadenitis images, 10 SjS images, and 10 control images for deep learning analysis. The performance of the deep learning system was calculated and compared between two experienced radiologists. The sensitivity of the deep learning system in the obstructive sialoadenitis group, SjS group, and control group was 55.0%, 83.0%, and 73.0%, respectively, and the total accuracy was 70.3%. The sensitivity of the two radiologists was 64.0%, 72.0%, and 86.0%, respectively, and the total accuracy was 74.0%. This study revealed that the deep learning system was more sensitive than experienced radiologists in diagnosing SjS in USG images of two case groups and a group of healthy subjects in inflammation of SMGs. |
Author | Kuwada, Chiaki Kise, Yoshitaka Naitoh, Munetaka Ariji, Yoshiko Ariji, Eiichiro |
AuthorAffiliation | Department of Oral and Maxillofacial Radiology, School of Dentistry, Aichi Gakuin University, Nagoya 464-8651, Japan; chiaki@dpc.agu.ac.jp (C.K.); yoshiko@dpc.agu.ac.jp (Y.A.); mune@dpc.agu.ac.jp (M.N.); ariji@dpc.agu.ac.jp (E.A.) |
AuthorAffiliation_xml | – name: Department of Oral and Maxillofacial Radiology, School of Dentistry, Aichi Gakuin University, Nagoya 464-8651, Japan; chiaki@dpc.agu.ac.jp (C.K.); yoshiko@dpc.agu.ac.jp (Y.A.); mune@dpc.agu.ac.jp (M.N.); ariji@dpc.agu.ac.jp (E.A.) |
Author_xml | – sequence: 1 givenname: Yoshitaka orcidid: 0000-0002-5890-2950 surname: Kise fullname: Kise, Yoshitaka – sequence: 2 givenname: Chiaki surname: Kuwada fullname: Kuwada, Chiaki – sequence: 3 givenname: Yoshiko surname: Ariji fullname: Ariji, Yoshiko – sequence: 4 givenname: Munetaka surname: Naitoh fullname: Naitoh, Munetaka – sequence: 5 givenname: Eiichiro orcidid: 0000-0002-5245-5395 surname: Ariji fullname: Ariji, Eiichiro |
BookMark | eNptkV1rFDEUhoNUbK298g8EvBFkNZNkPnIjSKt1YaGF7V6HfJyZzTKTrElG2N_gnzZrK7SlucmBPO-bc877Fp344AGh9xX5zJggX3ZmqkgleE26V-iMkrZdENaxk0f1KbpIaUfK6TpOq_YNOmW84aSm7Az9uY0wusl5FQ94nWd7wMHjvAV85dTgQ8rO4FuIfYiT8gZw6LHCVwB7vAIVvfMDXh9ShgkXBK9nXTDr9DyqiK_HUuOl70c1TSq74rxJR8VmzFGl4MMQ1X57wMtJDZDeode9GhNcPNznaPPj-93lz8Xq5np5-W21MLymeWEZ0LbR2mrTm5rbmivRGmZtXwnBSEO45rTtWsWM1qapoaFEc20EMzXT1LJz9PXed1-6BWvAl25GuY9uKluQQTn59MW7rRzCb9nVRDSUFYOPDwYx_JohZTm5ZGAs40KYk6R1V7WlFy4K-uEZugtz9GW8I0WEKDGRQlX3lIkhpQi9NC7_W1j5342yIvKYtnyUdtF8eqb5P8BL9F-M_K7P |
CitedBy_id | crossref_primary_10_3390_cancers16020274 |
Cites_doi | 10.1093/rheumatology/keh588 10.1007/s11604-019-00831-5 10.1136/ard.61.6.554 10.1148/rg.263055024 10.3389/fonc.2020.00053 10.1016/S2213-2600(18)30286-8 10.3348/kjr.2018.0530 10.1259/bjr.20170576 10.12659/MSM.890678 10.1016/j.cmpb.2016.10.007 10.1016/j.oooo.2018.10.002 10.1148/radiol.2018180763 10.1007/s11282-018-0363-7 10.3109/s10165-004-0338-x 10.15557/JoU.2016.0019 10.1007/s11282-019-00391-4 10.1155/2013/347238 10.1016/j.ejro.2018.09.002 10.3390/s20071822 10.1016/j.oooo.2019.05.014 10.1259/dmfr.20190019 10.1038/s41467-020-15027-z 10.1259/dmfr.20180218 10.1259/dmfr.20190225 10.5321/wjs.v4.i2.56 10.1259/dmfr.20190348 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION 3V. 7X7 7XB 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.3390/jcm10194508 |
DatabaseName | CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Central China ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete Health Research Premium Collection ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: 7X7 name: Health & Medical Collection url: https://search.proquest.com/healthcomplete sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2077-0383 |
ExternalDocumentID | PMC8509623 10_3390_jcm10194508 |
GeographicLocations | United States--US Japan |
GeographicLocations_xml | – name: United States--US – name: Japan |
GroupedDBID | 53G 5VS 7X7 8FI 8FJ AADQD AAFWJ AAYXX ABDBF ABUWG ACUHS ADBBV AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV BENPR CCPQU CITATION DIK FYUFA HMCUK HYE IAO IHR ITC KQ8 M48 MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY RPM UKHRP 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c452t-d3e276bbdbcfc54d54a97c3ddf19930604b42787a3cbbc65e620b4bc93c53b2d3 |
IEDL.DBID | M48 |
ISSN | 2077-0383 |
IngestDate | Thu Aug 21 18:06:17 EDT 2025 Thu Jul 10 22:50:09 EDT 2025 Mon Jun 30 13:47:14 EDT 2025 Thu Apr 24 22:58:23 EDT 2025 Tue Jul 01 04:30:08 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c452t-d3e276bbdbcfc54d54a97c3ddf19930604b42787a3cbbc65e620b4bc93c53b2d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5245-5395 0000-0002-5890-2950 |
OpenAccessLink | https://www.proquest.com/docview/2580992070?pq-origsite=%requestingapplication% |
PMID | 34640523 |
PQID | 2580992070 |
PQPubID | 5046890 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8509623 proquest_miscellaneous_2581799349 proquest_journals_2580992070 crossref_citationtrail_10_3390_jcm10194508 crossref_primary_10_3390_jcm10194508 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210929 |
PublicationDateYYYYMMDD | 2021-09-29 |
PublicationDate_xml | – month: 9 year: 2021 text: 20210929 day: 29 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Journal of clinical medicine |
PublicationYear | 2021 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Choi (ref_19) 2019; 20 Hiraiwa (ref_25) 2019; 48 Krishnamurthy (ref_1) 2015; 4 Badea (ref_6) 2013; 2013 Kise (ref_17) 2020; 49 Becker (ref_18) 2017; 91 Ariji (ref_10) 2019; 127 Murata (ref_26) 2019; 35 Bialek (ref_8) 2006; 26 Zheng (ref_22) 2020; 11 Ariji (ref_11) 2019; 36 Gao (ref_16) 2016; 138 Ariji (ref_27) 2019; 128 Szyfter (ref_5) 2014; 20 Fujibayashi (ref_28) 2004; 14 Elbeblawy (ref_4) 2020; 49 Gandage (ref_3) 2014; 8 Sun (ref_24) 2020; 10 Hocevar (ref_9) 2005; 44 Fujioka (ref_20) 2019; 37 ref_23 Stoffel (ref_21) 2018; 5 Choi (ref_13) 2018; 289 Stopa (ref_2) 2010; 75 Zajkowski (ref_7) 2016; 16 Kise (ref_12) 2019; 48 Walsh (ref_14) 2018; 6 Song (ref_15) 2017; 2017 Vitali (ref_29) 2002; 61 |
References_xml | – volume: 44 start-page: 768 year: 2005 ident: ref_9 article-title: Ultrasonographic changes of major salivary glands in pri-mary Sjögren’s syndrome. Diagnostic value of a novel scoring system publication-title: Rheumatology doi: 10.1093/rheumatology/keh588 – volume: 2017 start-page: 8314740 year: 2017 ident: ref_15 article-title: Using Deep Learning for Classification of Lung Nodules on Computed Tomography Images publication-title: J. Heal. Eng. – volume: 37 start-page: 466 year: 2019 ident: ref_20 article-title: Distinction between benign and malignant breast masses at breast ultrasound using deep learning method with convolutional neural network publication-title: Jpn. J. Radiol. doi: 10.1007/s11604-019-00831-5 – volume: 61 start-page: 554 year: 2002 ident: ref_29 article-title: Classification criteria for Sjogren’s syndrome: A revised version of the European criteria proposed by the American-European Consensus Group publication-title: Ann. Rheum. Dis. doi: 10.1136/ard.61.6.554 – volume: 75 start-page: 25 year: 2010 ident: ref_2 article-title: Sali-vary gland calculi—Contemporary methods of imaging publication-title: Pol. J. Radiol. – volume: 26 start-page: 745 year: 2006 ident: ref_8 article-title: US of the major salivary glands: Anatomy and spa-tial relationships, pathologic conditions, and pitfalls publication-title: Radiographics doi: 10.1148/rg.263055024 – volume: 10 start-page: 53 year: 2020 ident: ref_24 article-title: Deep Learning vs. Radiomics for Predicting Axillary Lymph Node Metastasis of Breast Cancer Using Ultrasound Images: Don’t Forget the Peritumoral Region publication-title: Front. Oncol. doi: 10.3389/fonc.2020.00053 – volume: 8 start-page: RC01 year: 2014 ident: ref_3 article-title: An Imaging Panorama of Salivary Gland Lesions as seen on High Resolution Ultrasound publication-title: J. Clin. Diagn. Res. – volume: 6 start-page: 837 year: 2018 ident: ref_14 article-title: Deep learning for classifying fibrotic lung disease on high-resolution computed tomography: A case-cohort study publication-title: Lancet Respir. Med. doi: 10.1016/S2213-2600(18)30286-8 – volume: 20 start-page: 749 year: 2019 ident: ref_19 article-title: Effect of a Deep Learning Framework-Based Computer-Aided Diagnosis System on the Diagnostic Performance of Radiologists in Differentiating between Malignant and Benign Masses on Breast Ultrasonography publication-title: Korean J. Radiol. doi: 10.3348/kjr.2018.0530 – volume: 91 start-page: 20170576 year: 2017 ident: ref_18 article-title: Classification of breast cancer from ultrasound imaging using a generic deep learning analysis software: A pilot study publication-title: Br. J. Radiol. doi: 10.1259/bjr.20170576 – volume: 20 start-page: 2311 year: 2014 ident: ref_5 article-title: Sonoelastography—A Useful Adjunct for Parotid Gland Ultrasound Assessment in Patients Suffering from Chronic Inflammation publication-title: Med Sci. Monit. doi: 10.12659/MSM.890678 – volume: 138 start-page: 49 year: 2016 ident: ref_16 article-title: Classification of CT brain images based on deep learning networks publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2016.10.007 – volume: 127 start-page: 458 year: 2019 ident: ref_10 article-title: Contrast-enhanced computed tomography image assessment of cervical lymph node metastasis in patients with oral cancer by using a deep learning system of artificial intelligence publication-title: Oral Surg. Oral Med. Oral Pathol. Oral Radiol. doi: 10.1016/j.oooo.2018.10.002 – volume: 289 start-page: 688 year: 2018 ident: ref_13 article-title: Development and Validation of a Deep Learning System for Staging Liver Fibrosis by Using Contrast Agent–enhanced CT Images in the Liver publication-title: Radiology doi: 10.1148/radiol.2018180763 – volume: 35 start-page: 301 year: 2019 ident: ref_26 article-title: Deep-learning classification using convolutional neural network for evaluation of maxillary sinusitis on panoramic radiography publication-title: Oral Radiol. doi: 10.1007/s11282-018-0363-7 – volume: 14 start-page: 425 year: 2004 ident: ref_28 article-title: Revised Japanese criteria for Sjögren’s syndrome (1999): Availability and validity publication-title: Mod. Rheumatol. doi: 10.3109/s10165-004-0338-x – volume: 16 start-page: 175 year: 2016 ident: ref_7 article-title: Standards for the assessment of salivary glands—An update publication-title: J. Ultrason. doi: 10.15557/JoU.2016.0019 – volume: 36 start-page: 148 year: 2019 ident: ref_11 article-title: CT evaluation of extranodal extension of cervical lymph node metastases in patients with oral squamous cell carcinoma using deep learning classification publication-title: Oral Radiol. doi: 10.1007/s11282-019-00391-4 – volume: 2013 start-page: 347238 year: 2013 ident: ref_6 article-title: Fractal analysis of elasto-graphic images for automatic detection of diffuse diseases of salivary glands: Preliminary results publication-title: Comput. Math Methods Med. doi: 10.1155/2013/347238 – volume: 5 start-page: 165 year: 2018 ident: ref_21 article-title: Distinction between phyllodes tu-mor and fibroadenoma in breast ultrasound using deep learning image analysis publication-title: Eur. J. Radiol. Open doi: 10.1016/j.ejro.2018.09.002 – ident: ref_23 doi: 10.3390/s20071822 – volume: 128 start-page: 424 year: 2019 ident: ref_27 article-title: Automatic detection and classification of radiolucent lesions in the mandible on panoramic radiographs using a deep learning object detection technique publication-title: Oral Surg. Oral Med. Oral Pathol. Oral Radiol. doi: 10.1016/j.oooo.2019.05.014 – volume: 48 start-page: 20190019 year: 2019 ident: ref_12 article-title: Preliminary study on the application of deep learning system to diagnosis of Sjögren’s syndrome on CT images publication-title: Dentomaxillofac. Radiol. doi: 10.1259/dmfr.20190019 – volume: 11 start-page: 1236 year: 2020 ident: ref_22 article-title: Deep learning radiomics can predict axillary lymph node status in early-stage breast cancer publication-title: Nat. Commun. doi: 10.1038/s41467-020-15027-z – volume: 48 start-page: 20180218 year: 2019 ident: ref_25 article-title: A deep-learning artificial intelli-gence system for assessment of root morphology of the mandibular first molar on panoramic radiography publication-title: Dentomaxillofac. Radiol. doi: 10.1259/dmfr.20180218 – volume: 49 start-page: 20190225 year: 2020 ident: ref_4 article-title: Strain and shear wave ultrasound elastography in evaluation of chronic inflammatory disorders of major salivary glands publication-title: Dentomaxillofac. Radiol. doi: 10.1259/dmfr.20190225 – volume: 4 start-page: 56 year: 2015 ident: ref_1 article-title: Salivary gland disorders: A comprehensive review publication-title: World J. Stomatol. doi: 10.5321/wjs.v4.i2.56 – volume: 49 start-page: 20190348 year: 2020 ident: ref_17 article-title: Usefulness of a deep learning system for diagnosing Sjögren’s syndrome using ultrasonography images publication-title: Dentomaxillofac. Radiol. doi: 10.1259/dmfr.20190348 |
SSID | ssj0000884217 |
Score | 2.1814258 |
Snippet | This study was performed to evaluate the diagnostic performance of deep learning systems using ultrasonography (USG) images of the submandibular glands (SMGs)... |
SourceID | pubmedcentral proquest crossref |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 4508 |
SubjectTerms | Artificial intelligence Clinical medicine Deep learning Disease Exocrine glands Hospitals Ultrasonic imaging Womens health |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LaxsxEBaJAyWX0DQNceKWKfgUWOLosY9TKHWdB7jkUINvi16btti7ru0c8hvypzOzK9sxhJylRWJnNPokffMNY10XS60zp6ICN-8IA14vSqUvIpv4lNTPEZVTgvPwV3wzkndjNQ4XbotAq1zFxDpQu8rSHfkFVymCGY4eejX7H1HVKHpdDSU0dtkeSZcRpSsZJ-s7FlxBEiF3k5Yn8HR_8c9O0QcznEO6vRFt0OU2N_LVZjP4yA4CSoTvjVkP2Y4vP7EPw_AOfsSe7-d-Utfjmj8BUQGfoCoBsRz0G-ocfgf3m5wAqArQ0Pd-BkFQ9QEarXLALoDRY0rpLYY4qXBNZEe4LQt0liaxEWpiAYwmOFfE50HlGm6nGIwWn9lo8PP3j5solFWIrFR8GTnheRIb44wtrJJOSZ0lVjhXEJmPxHQM1d9ItLDG2Fj5mPeMNDYTVgnDnThmrbIq_QmDS-uKWKcSUaCWPpWZlZonlybrKZ9qLdrsfPWPcxs0x6n0xSTHswcZJH9lkDbrrjvPGqmNt7t1VsbKw3pb5BvvaLNv62ZcKfT8oUtfPdZ9SP5OyKzNki0jr4cjre3tlvLvn1pzOyWZHC5O3x_8jO1z4rzQq1XWYa3l_NF_QdCyNF9rz3wB49Lxjw priority: 102 providerName: ProQuest |
Title | Preliminary Study on the Diagnostic Performance of a Deep Learning System for Submandibular Gland Inflammation Using Ultrasonography Images |
URI | https://www.proquest.com/docview/2580992070 https://www.proquest.com/docview/2581799349 https://pubmed.ncbi.nlm.nih.gov/PMC8509623 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LaxsxEB7ygNJL6ZO6Sc0Ucipsu9FjpT2U0jZJk4KDKTX4tkhabR_Y68RxoP4N_dOd2V07ccmhZ420i2Y0-gbNfANwUGbKubzUSUWXd0IOL02silUSTLTMfk6onAucB-fZ6Uh9GevxFqyacXYbeHVnaMf9pEbzyZvfl8v3dODfccRJIfvbX2FKhpXTwnYbdulKMnxCBx3Ob1yytUo03XdFakySUljW1ur9O3_zdrqBnJsJk7duoJOH8KCDjvih1fUj2Ir1Y7g36B7Hn8Cf4TxOmiZd8yVyfuASZzUSwMOjNp-O5uHwplAAZxU6PIrxAjuW1e_YEpgjiSC5lCnXvHhOVMXPnAGJZ3VFFtRWO2KTbYCjCf0rgfaO-hrPpuShrp7C6OT426fTpOu1kASlxSIpZRQm8770oQpalVq53ARZlhVn-DHDjuemHMbJ4H3IdMxE6pUPuQxaelHKZ7BTz-r4HPAwlFXmrCJo6FS0Kg_KCXPo81RH65zswevVHhehIyLnfhiTggISVkhxSyE9OFgLX7T8G3eL7a-UVaxsqBDaEv4ljac9eLUepuPDbyKujrPrRoY58aTKe2A2lLz-HBNwb47UP380RNyWuXOEfPEfq-_BfcHZMPyele_DzmJ-HV8SnFn4PmybsenD7sfj8-HXfmO4fwGXY_oy |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVAIuiKcIFBikckFaNbW9rwNCQFoS2kQRaqTeFtvrhVbJbkhSofwG_gu_kZl9JI2EuPXs2fWuZzwe2998A7CfBkrrOPW9jBZvjxxex4uUyzwbuojZzykq5wTnwTDojdWXc_98B_40uTAMq2x8Yumo08LyGfmB8CMKZgRZ6PvZT4-rRvHtalNCozKLE7f6RVu2xbt-l_T7Rojjo7NPPa-uKuBZ5Yull0onwsCY1NjM-ir1lY5DK9M0Yywbc8kYLj8RammNsYHvAtExythYWl8akUp67y3YVZK2Mi3Y_Xg0HH1dn-rQnFUU5FeJgFLGnYNLOyWrj-mvo-2lbxPPbqMxry1vx_fhXh2X4ofKkB7Ajssfwu1BffP-CH6P5m5SVgCbr5DBhysscqToEbsVWI-ew9EmCwGLDDV2nZthTeH6HSt2dCQRJH815YQawyhY_MzwSuznGZlnlUqJJZQBxxP6VtoR1Lza2J-S-1s8hvGNDPkTaOVF7p4CHto0C3SkKO7UykUqtkqL8NDEHd9FWss2vG3GOLE1yzkX25gktNthhSTXFNKG_bXwrCL3-LfYXqOspJ7hi2Rjj214vW6muckXLjp3xVUpw4R7UsVtCLeUvO6O2b23W_KLHyXLd8TEPEI--3_nr-BO72xwmpz2hyfP4a5gxA3fmcV70FrOr9wLCpmW5mVtpwjfbnpq_AW56TEL |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaWRVpxQTxFYYFBWi5IUVs_4uSAEKKULcuueqBSb8Gv8FCblLYr1N_AP-LXMZNHu5UQtz3biRPPw2P7m28YO_GxNCb1Kspx8Y7Q4fWiRIY8cjokxH6OUTklOJ9fxKcT-XGqpgfsT5sLQ7DK1idWjtqXjs7Iu1wlGMxw1NBu3sAixoPhm8XPiCpI0U1rW06jVpGzsPmF27fV69EAZf2S8-H7z-9Oo6bCQOSk4uvIi8B1bK23LndKeiVNqp3wPidcG_HKWCpFoY1w1rpYhZj3rLQuFU4Jy73A995gN7VQfbIxPdXb8x20Xonhfp0SKETa6_5wc9T_FP8_2V8Ed5HtPi7zykI3vMNuNxEqvK1V6i47CMU9dnTe3MHfZ7_HyzCraoEtN0AwxA2UBWAcCYMatofPwXiXjwBlDgYGISygIXP9CjVPOmAXQM81p9QaS3hY-EBASxgVOSpqnVQJFagBJjP8VtwbNAzbMJqjI1w9YJNrmfCH7LAoi_CIQd_5PDaJxAjUyJDI1EnDdd-mPRUSY0SHvWrnOHMN3zmV3ZhluO8hgWRXBNJhJ9vOi5rm49_djlthZY2tr7KdZnbYi20zWildvZgilJdVH6LeEzLtML0n5O1wxPO931J8_1bxfSdE0cPF4_8P_pwdoUFkn0YXZ0_YLU7QG7o8S4_Z4Xp5GZ5i7LS2zyolBfbluq3iLzgXM9s |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preliminary+Study+on+the+Diagnostic+Performance+of+a+Deep+Learning+System+for+Submandibular+Gland+Inflammation+Using+Ultrasonography+Images&rft.jtitle=Journal+of+clinical+medicine&rft.au=Kise%2C+Yoshitaka&rft.au=Kuwada%2C+Chiaki&rft.au=Ariji%2C+Yoshiko&rft.au=Naitoh%2C+Munetaka&rft.date=2021-09-29&rft.issn=2077-0383&rft.eissn=2077-0383&rft.volume=10&rft.issue=19&rft_id=info:doi/10.3390%2Fjcm10194508&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2077-0383&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2077-0383&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2077-0383&client=summon |