Preliminary Study on the Diagnostic Performance of a Deep Learning System for Submandibular Gland Inflammation Using Ultrasonography Images

This study was performed to evaluate the diagnostic performance of deep learning systems using ultrasonography (USG) images of the submandibular glands (SMGs) in three different conditions: obstructive sialoadenitis, Sjögren’s syndrome (SjS), and normal glands. Fifty USG images with a confirmed diag...

Full description

Saved in:
Bibliographic Details
Published inJournal of clinical medicine Vol. 10; no. 19; p. 4508
Main Authors Kise, Yoshitaka, Kuwada, Chiaki, Ariji, Yoshiko, Naitoh, Munetaka, Ariji, Eiichiro
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 29.09.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study was performed to evaluate the diagnostic performance of deep learning systems using ultrasonography (USG) images of the submandibular glands (SMGs) in three different conditions: obstructive sialoadenitis, Sjögren’s syndrome (SjS), and normal glands. Fifty USG images with a confirmed diagnosis of obstructive sialoadenitis, 50 USG images with a confirmed diagnosis of SjS, and 50 USG images with no SMG abnormalities were included in the study. The training group comprised 40 obstructive sialoadenitis images, 40 SjS images, and 40 control images, and the test group comprised 10 obstructive sialoadenitis images, 10 SjS images, and 10 control images for deep learning analysis. The performance of the deep learning system was calculated and compared between two experienced radiologists. The sensitivity of the deep learning system in the obstructive sialoadenitis group, SjS group, and control group was 55.0%, 83.0%, and 73.0%, respectively, and the total accuracy was 70.3%. The sensitivity of the two radiologists was 64.0%, 72.0%, and 86.0%, respectively, and the total accuracy was 74.0%. This study revealed that the deep learning system was more sensitive than experienced radiologists in diagnosing SjS in USG images of two case groups and a group of healthy subjects in inflammation of SMGs.
AbstractList This study was performed to evaluate the diagnostic performance of deep learning systems using ultrasonography (USG) images of the submandibular glands (SMGs) in three different conditions: obstructive sialoadenitis, Sjögren’s syndrome (SjS), and normal glands. Fifty USG images with a confirmed diagnosis of obstructive sialoadenitis, 50 USG images with a confirmed diagnosis of SjS, and 50 USG images with no SMG abnormalities were included in the study. The training group comprised 40 obstructive sialoadenitis images, 40 SjS images, and 40 control images, and the test group comprised 10 obstructive sialoadenitis images, 10 SjS images, and 10 control images for deep learning analysis. The performance of the deep learning system was calculated and compared between two experienced radiologists. The sensitivity of the deep learning system in the obstructive sialoadenitis group, SjS group, and control group was 55.0%, 83.0%, and 73.0%, respectively, and the total accuracy was 70.3%. The sensitivity of the two radiologists was 64.0%, 72.0%, and 86.0%, respectively, and the total accuracy was 74.0%. This study revealed that the deep learning system was more sensitive than experienced radiologists in diagnosing SjS in USG images of two case groups and a group of healthy subjects in inflammation of SMGs.
This study was performed to evaluate the diagnostic performance of deep learning systems using ultrasonography (USG) images of the submandibular glands (SMGs) in three different conditions: obstructive sialoadenitis, Sjögren's syndrome (SjS), and normal glands. Fifty USG images with a confirmed diagnosis of obstructive sialoadenitis, 50 USG images with a confirmed diagnosis of SjS, and 50 USG images with no SMG abnormalities were included in the study. The training group comprised 40 obstructive sialoadenitis images, 40 SjS images, and 40 control images, and the test group comprised 10 obstructive sialoadenitis images, 10 SjS images, and 10 control images for deep learning analysis. The performance of the deep learning system was calculated and compared between two experienced radiologists. The sensitivity of the deep learning system in the obstructive sialoadenitis group, SjS group, and control group was 55.0%, 83.0%, and 73.0%, respectively, and the total accuracy was 70.3%. The sensitivity of the two radiologists was 64.0%, 72.0%, and 86.0%, respectively, and the total accuracy was 74.0%. This study revealed that the deep learning system was more sensitive than experienced radiologists in diagnosing SjS in USG images of two case groups and a group of healthy subjects in inflammation of SMGs.This study was performed to evaluate the diagnostic performance of deep learning systems using ultrasonography (USG) images of the submandibular glands (SMGs) in three different conditions: obstructive sialoadenitis, Sjögren's syndrome (SjS), and normal glands. Fifty USG images with a confirmed diagnosis of obstructive sialoadenitis, 50 USG images with a confirmed diagnosis of SjS, and 50 USG images with no SMG abnormalities were included in the study. The training group comprised 40 obstructive sialoadenitis images, 40 SjS images, and 40 control images, and the test group comprised 10 obstructive sialoadenitis images, 10 SjS images, and 10 control images for deep learning analysis. The performance of the deep learning system was calculated and compared between two experienced radiologists. The sensitivity of the deep learning system in the obstructive sialoadenitis group, SjS group, and control group was 55.0%, 83.0%, and 73.0%, respectively, and the total accuracy was 70.3%. The sensitivity of the two radiologists was 64.0%, 72.0%, and 86.0%, respectively, and the total accuracy was 74.0%. This study revealed that the deep learning system was more sensitive than experienced radiologists in diagnosing SjS in USG images of two case groups and a group of healthy subjects in inflammation of SMGs.
Author Kuwada, Chiaki
Kise, Yoshitaka
Naitoh, Munetaka
Ariji, Yoshiko
Ariji, Eiichiro
AuthorAffiliation Department of Oral and Maxillofacial Radiology, School of Dentistry, Aichi Gakuin University, Nagoya 464-8651, Japan; chiaki@dpc.agu.ac.jp (C.K.); yoshiko@dpc.agu.ac.jp (Y.A.); mune@dpc.agu.ac.jp (M.N.); ariji@dpc.agu.ac.jp (E.A.)
AuthorAffiliation_xml – name: Department of Oral and Maxillofacial Radiology, School of Dentistry, Aichi Gakuin University, Nagoya 464-8651, Japan; chiaki@dpc.agu.ac.jp (C.K.); yoshiko@dpc.agu.ac.jp (Y.A.); mune@dpc.agu.ac.jp (M.N.); ariji@dpc.agu.ac.jp (E.A.)
Author_xml – sequence: 1
  givenname: Yoshitaka
  orcidid: 0000-0002-5890-2950
  surname: Kise
  fullname: Kise, Yoshitaka
– sequence: 2
  givenname: Chiaki
  surname: Kuwada
  fullname: Kuwada, Chiaki
– sequence: 3
  givenname: Yoshiko
  surname: Ariji
  fullname: Ariji, Yoshiko
– sequence: 4
  givenname: Munetaka
  surname: Naitoh
  fullname: Naitoh, Munetaka
– sequence: 5
  givenname: Eiichiro
  orcidid: 0000-0002-5245-5395
  surname: Ariji
  fullname: Ariji, Eiichiro
BookMark eNptkV1rFDEUhoNUbK298g8EvBFkNZNkPnIjSKt1YaGF7V6HfJyZzTKTrElG2N_gnzZrK7SlucmBPO-bc877Fp344AGh9xX5zJggX3ZmqkgleE26V-iMkrZdENaxk0f1KbpIaUfK6TpOq_YNOmW84aSm7Az9uY0wusl5FQ94nWd7wMHjvAV85dTgQ8rO4FuIfYiT8gZw6LHCVwB7vAIVvfMDXh9ShgkXBK9nXTDr9DyqiK_HUuOl70c1TSq74rxJR8VmzFGl4MMQ1X57wMtJDZDeode9GhNcPNznaPPj-93lz8Xq5np5-W21MLymeWEZ0LbR2mrTm5rbmivRGmZtXwnBSEO45rTtWsWM1qapoaFEc20EMzXT1LJz9PXed1-6BWvAl25GuY9uKluQQTn59MW7rRzCb9nVRDSUFYOPDwYx_JohZTm5ZGAs40KYk6R1V7WlFy4K-uEZugtz9GW8I0WEKDGRQlX3lIkhpQi9NC7_W1j5342yIvKYtnyUdtF8eqb5P8BL9F-M_K7P
CitedBy_id crossref_primary_10_3390_cancers16020274
Cites_doi 10.1093/rheumatology/keh588
10.1007/s11604-019-00831-5
10.1136/ard.61.6.554
10.1148/rg.263055024
10.3389/fonc.2020.00053
10.1016/S2213-2600(18)30286-8
10.3348/kjr.2018.0530
10.1259/bjr.20170576
10.12659/MSM.890678
10.1016/j.cmpb.2016.10.007
10.1016/j.oooo.2018.10.002
10.1148/radiol.2018180763
10.1007/s11282-018-0363-7
10.3109/s10165-004-0338-x
10.15557/JoU.2016.0019
10.1007/s11282-019-00391-4
10.1155/2013/347238
10.1016/j.ejro.2018.09.002
10.3390/s20071822
10.1016/j.oooo.2019.05.014
10.1259/dmfr.20190019
10.1038/s41467-020-15027-z
10.1259/dmfr.20180218
10.1259/dmfr.20190225
10.5321/wjs.v4.i2.56
10.1259/dmfr.20190348
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
3V.
7X7
7XB
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.3390/jcm10194508
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Central China
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
Health Research Premium Collection
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: 7X7
  name: Health & Medical Collection
  url: https://search.proquest.com/healthcomplete
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2077-0383
ExternalDocumentID PMC8509623
10_3390_jcm10194508
GeographicLocations United States--US
Japan
GeographicLocations_xml – name: United States--US
– name: Japan
GroupedDBID 53G
5VS
7X7
8FI
8FJ
AADQD
AAFWJ
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
BENPR
CCPQU
CITATION
DIK
FYUFA
HMCUK
HYE
IAO
IHR
ITC
KQ8
M48
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
RPM
UKHRP
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c452t-d3e276bbdbcfc54d54a97c3ddf19930604b42787a3cbbc65e620b4bc93c53b2d3
IEDL.DBID M48
ISSN 2077-0383
IngestDate Thu Aug 21 18:06:17 EDT 2025
Thu Jul 10 22:50:09 EDT 2025
Mon Jun 30 13:47:14 EDT 2025
Thu Apr 24 22:58:23 EDT 2025
Tue Jul 01 04:30:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c452t-d3e276bbdbcfc54d54a97c3ddf19930604b42787a3cbbc65e620b4bc93c53b2d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5245-5395
0000-0002-5890-2950
OpenAccessLink https://www.proquest.com/docview/2580992070?pq-origsite=%requestingapplication%
PMID 34640523
PQID 2580992070
PQPubID 5046890
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8509623
proquest_miscellaneous_2581799349
proquest_journals_2580992070
crossref_citationtrail_10_3390_jcm10194508
crossref_primary_10_3390_jcm10194508
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210929
PublicationDateYYYYMMDD 2021-09-29
PublicationDate_xml – month: 9
  year: 2021
  text: 20210929
  day: 29
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Journal of clinical medicine
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Choi (ref_19) 2019; 20
Hiraiwa (ref_25) 2019; 48
Krishnamurthy (ref_1) 2015; 4
Badea (ref_6) 2013; 2013
Kise (ref_17) 2020; 49
Becker (ref_18) 2017; 91
Ariji (ref_10) 2019; 127
Murata (ref_26) 2019; 35
Bialek (ref_8) 2006; 26
Zheng (ref_22) 2020; 11
Ariji (ref_11) 2019; 36
Gao (ref_16) 2016; 138
Ariji (ref_27) 2019; 128
Szyfter (ref_5) 2014; 20
Fujibayashi (ref_28) 2004; 14
Elbeblawy (ref_4) 2020; 49
Gandage (ref_3) 2014; 8
Sun (ref_24) 2020; 10
Hocevar (ref_9) 2005; 44
Fujioka (ref_20) 2019; 37
ref_23
Stoffel (ref_21) 2018; 5
Choi (ref_13) 2018; 289
Stopa (ref_2) 2010; 75
Zajkowski (ref_7) 2016; 16
Kise (ref_12) 2019; 48
Walsh (ref_14) 2018; 6
Song (ref_15) 2017; 2017
Vitali (ref_29) 2002; 61
References_xml – volume: 44
  start-page: 768
  year: 2005
  ident: ref_9
  article-title: Ultrasonographic changes of major salivary glands in pri-mary Sjögren’s syndrome. Diagnostic value of a novel scoring system
  publication-title: Rheumatology
  doi: 10.1093/rheumatology/keh588
– volume: 2017
  start-page: 8314740
  year: 2017
  ident: ref_15
  article-title: Using Deep Learning for Classification of Lung Nodules on Computed Tomography Images
  publication-title: J. Heal. Eng.
– volume: 37
  start-page: 466
  year: 2019
  ident: ref_20
  article-title: Distinction between benign and malignant breast masses at breast ultrasound using deep learning method with convolutional neural network
  publication-title: Jpn. J. Radiol.
  doi: 10.1007/s11604-019-00831-5
– volume: 61
  start-page: 554
  year: 2002
  ident: ref_29
  article-title: Classification criteria for Sjogren’s syndrome: A revised version of the European criteria proposed by the American-European Consensus Group
  publication-title: Ann. Rheum. Dis.
  doi: 10.1136/ard.61.6.554
– volume: 75
  start-page: 25
  year: 2010
  ident: ref_2
  article-title: Sali-vary gland calculi—Contemporary methods of imaging
  publication-title: Pol. J. Radiol.
– volume: 26
  start-page: 745
  year: 2006
  ident: ref_8
  article-title: US of the major salivary glands: Anatomy and spa-tial relationships, pathologic conditions, and pitfalls
  publication-title: Radiographics
  doi: 10.1148/rg.263055024
– volume: 10
  start-page: 53
  year: 2020
  ident: ref_24
  article-title: Deep Learning vs. Radiomics for Predicting Axillary Lymph Node Metastasis of Breast Cancer Using Ultrasound Images: Don’t Forget the Peritumoral Region
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2020.00053
– volume: 8
  start-page: RC01
  year: 2014
  ident: ref_3
  article-title: An Imaging Panorama of Salivary Gland Lesions as seen on High Resolution Ultrasound
  publication-title: J. Clin. Diagn. Res.
– volume: 6
  start-page: 837
  year: 2018
  ident: ref_14
  article-title: Deep learning for classifying fibrotic lung disease on high-resolution computed tomography: A case-cohort study
  publication-title: Lancet Respir. Med.
  doi: 10.1016/S2213-2600(18)30286-8
– volume: 20
  start-page: 749
  year: 2019
  ident: ref_19
  article-title: Effect of a Deep Learning Framework-Based Computer-Aided Diagnosis System on the Diagnostic Performance of Radiologists in Differentiating between Malignant and Benign Masses on Breast Ultrasonography
  publication-title: Korean J. Radiol.
  doi: 10.3348/kjr.2018.0530
– volume: 91
  start-page: 20170576
  year: 2017
  ident: ref_18
  article-title: Classification of breast cancer from ultrasound imaging using a generic deep learning analysis software: A pilot study
  publication-title: Br. J. Radiol.
  doi: 10.1259/bjr.20170576
– volume: 20
  start-page: 2311
  year: 2014
  ident: ref_5
  article-title: Sonoelastography—A Useful Adjunct for Parotid Gland Ultrasound Assessment in Patients Suffering from Chronic Inflammation
  publication-title: Med Sci. Monit.
  doi: 10.12659/MSM.890678
– volume: 138
  start-page: 49
  year: 2016
  ident: ref_16
  article-title: Classification of CT brain images based on deep learning networks
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2016.10.007
– volume: 127
  start-page: 458
  year: 2019
  ident: ref_10
  article-title: Contrast-enhanced computed tomography image assessment of cervical lymph node metastasis in patients with oral cancer by using a deep learning system of artificial intelligence
  publication-title: Oral Surg. Oral Med. Oral Pathol. Oral Radiol.
  doi: 10.1016/j.oooo.2018.10.002
– volume: 289
  start-page: 688
  year: 2018
  ident: ref_13
  article-title: Development and Validation of a Deep Learning System for Staging Liver Fibrosis by Using Contrast Agent–enhanced CT Images in the Liver
  publication-title: Radiology
  doi: 10.1148/radiol.2018180763
– volume: 35
  start-page: 301
  year: 2019
  ident: ref_26
  article-title: Deep-learning classification using convolutional neural network for evaluation of maxillary sinusitis on panoramic radiography
  publication-title: Oral Radiol.
  doi: 10.1007/s11282-018-0363-7
– volume: 14
  start-page: 425
  year: 2004
  ident: ref_28
  article-title: Revised Japanese criteria for Sjögren’s syndrome (1999): Availability and validity
  publication-title: Mod. Rheumatol.
  doi: 10.3109/s10165-004-0338-x
– volume: 16
  start-page: 175
  year: 2016
  ident: ref_7
  article-title: Standards for the assessment of salivary glands—An update
  publication-title: J. Ultrason.
  doi: 10.15557/JoU.2016.0019
– volume: 36
  start-page: 148
  year: 2019
  ident: ref_11
  article-title: CT evaluation of extranodal extension of cervical lymph node metastases in patients with oral squamous cell carcinoma using deep learning classification
  publication-title: Oral Radiol.
  doi: 10.1007/s11282-019-00391-4
– volume: 2013
  start-page: 347238
  year: 2013
  ident: ref_6
  article-title: Fractal analysis of elasto-graphic images for automatic detection of diffuse diseases of salivary glands: Preliminary results
  publication-title: Comput. Math Methods Med.
  doi: 10.1155/2013/347238
– volume: 5
  start-page: 165
  year: 2018
  ident: ref_21
  article-title: Distinction between phyllodes tu-mor and fibroadenoma in breast ultrasound using deep learning image analysis
  publication-title: Eur. J. Radiol. Open
  doi: 10.1016/j.ejro.2018.09.002
– ident: ref_23
  doi: 10.3390/s20071822
– volume: 128
  start-page: 424
  year: 2019
  ident: ref_27
  article-title: Automatic detection and classification of radiolucent lesions in the mandible on panoramic radiographs using a deep learning object detection technique
  publication-title: Oral Surg. Oral Med. Oral Pathol. Oral Radiol.
  doi: 10.1016/j.oooo.2019.05.014
– volume: 48
  start-page: 20190019
  year: 2019
  ident: ref_12
  article-title: Preliminary study on the application of deep learning system to diagnosis of Sjögren’s syndrome on CT images
  publication-title: Dentomaxillofac. Radiol.
  doi: 10.1259/dmfr.20190019
– volume: 11
  start-page: 1236
  year: 2020
  ident: ref_22
  article-title: Deep learning radiomics can predict axillary lymph node status in early-stage breast cancer
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15027-z
– volume: 48
  start-page: 20180218
  year: 2019
  ident: ref_25
  article-title: A deep-learning artificial intelli-gence system for assessment of root morphology of the mandibular first molar on panoramic radiography
  publication-title: Dentomaxillofac. Radiol.
  doi: 10.1259/dmfr.20180218
– volume: 49
  start-page: 20190225
  year: 2020
  ident: ref_4
  article-title: Strain and shear wave ultrasound elastography in evaluation of chronic inflammatory disorders of major salivary glands
  publication-title: Dentomaxillofac. Radiol.
  doi: 10.1259/dmfr.20190225
– volume: 4
  start-page: 56
  year: 2015
  ident: ref_1
  article-title: Salivary gland disorders: A comprehensive review
  publication-title: World J. Stomatol.
  doi: 10.5321/wjs.v4.i2.56
– volume: 49
  start-page: 20190348
  year: 2020
  ident: ref_17
  article-title: Usefulness of a deep learning system for diagnosing Sjögren’s syndrome using ultrasonography images
  publication-title: Dentomaxillofac. Radiol.
  doi: 10.1259/dmfr.20190348
SSID ssj0000884217
Score 2.1814258
Snippet This study was performed to evaluate the diagnostic performance of deep learning systems using ultrasonography (USG) images of the submandibular glands (SMGs)...
SourceID pubmedcentral
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 4508
SubjectTerms Artificial intelligence
Clinical medicine
Deep learning
Disease
Exocrine glands
Hospitals
Ultrasonic imaging
Womens health
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LaxsxEBaJAyWX0DQNceKWKfgUWOLosY9TKHWdB7jkUINvi16btti7ru0c8hvypzOzK9sxhJylRWJnNPokffMNY10XS60zp6ICN-8IA14vSqUvIpv4lNTPEZVTgvPwV3wzkndjNQ4XbotAq1zFxDpQu8rSHfkFVymCGY4eejX7H1HVKHpdDSU0dtkeSZcRpSsZJ-s7FlxBEiF3k5Yn8HR_8c9O0QcznEO6vRFt0OU2N_LVZjP4yA4CSoTvjVkP2Y4vP7EPw_AOfsSe7-d-Utfjmj8BUQGfoCoBsRz0G-ocfgf3m5wAqArQ0Pd-BkFQ9QEarXLALoDRY0rpLYY4qXBNZEe4LQt0liaxEWpiAYwmOFfE50HlGm6nGIwWn9lo8PP3j5solFWIrFR8GTnheRIb44wtrJJOSZ0lVjhXEJmPxHQM1d9ItLDG2Fj5mPeMNDYTVgnDnThmrbIq_QmDS-uKWKcSUaCWPpWZlZonlybrKZ9qLdrsfPWPcxs0x6n0xSTHswcZJH9lkDbrrjvPGqmNt7t1VsbKw3pb5BvvaLNv62ZcKfT8oUtfPdZ9SP5OyKzNki0jr4cjre3tlvLvn1pzOyWZHC5O3x_8jO1z4rzQq1XWYa3l_NF_QdCyNF9rz3wB49Lxjw
  priority: 102
  providerName: ProQuest
Title Preliminary Study on the Diagnostic Performance of a Deep Learning System for Submandibular Gland Inflammation Using Ultrasonography Images
URI https://www.proquest.com/docview/2580992070
https://www.proquest.com/docview/2581799349
https://pubmed.ncbi.nlm.nih.gov/PMC8509623
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LaxsxEB7ygNJL6ZO6Sc0Ucipsu9FjpT2U0jZJk4KDKTX4tkhabR_Y68RxoP4N_dOd2V07ccmhZ420i2Y0-gbNfANwUGbKubzUSUWXd0IOL02silUSTLTMfk6onAucB-fZ6Uh9GevxFqyacXYbeHVnaMf9pEbzyZvfl8v3dODfccRJIfvbX2FKhpXTwnYbdulKMnxCBx3Ob1yytUo03XdFakySUljW1ur9O3_zdrqBnJsJk7duoJOH8KCDjvih1fUj2Ir1Y7g36B7Hn8Cf4TxOmiZd8yVyfuASZzUSwMOjNp-O5uHwplAAZxU6PIrxAjuW1e_YEpgjiSC5lCnXvHhOVMXPnAGJZ3VFFtRWO2KTbYCjCf0rgfaO-hrPpuShrp7C6OT426fTpOu1kASlxSIpZRQm8770oQpalVq53ARZlhVn-DHDjuemHMbJ4H3IdMxE6pUPuQxaelHKZ7BTz-r4HPAwlFXmrCJo6FS0Kg_KCXPo81RH65zswevVHhehIyLnfhiTggISVkhxSyE9OFgLX7T8G3eL7a-UVaxsqBDaEv4ljac9eLUepuPDbyKujrPrRoY58aTKe2A2lLz-HBNwb47UP380RNyWuXOEfPEfq-_BfcHZMPyele_DzmJ-HV8SnFn4PmybsenD7sfj8-HXfmO4fwGXY_oy
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVAIuiKcIFBikckFaNbW9rwNCQFoS2kQRaqTeFtvrhVbJbkhSofwG_gu_kZl9JI2EuPXs2fWuZzwe2998A7CfBkrrOPW9jBZvjxxex4uUyzwbuojZzykq5wTnwTDojdWXc_98B_40uTAMq2x8Yumo08LyGfmB8CMKZgRZ6PvZT4-rRvHtalNCozKLE7f6RVu2xbt-l_T7Rojjo7NPPa-uKuBZ5Yull0onwsCY1NjM-ir1lY5DK9M0Yywbc8kYLj8RammNsYHvAtExythYWl8akUp67y3YVZK2Mi3Y_Xg0HH1dn-rQnFUU5FeJgFLGnYNLOyWrj-mvo-2lbxPPbqMxry1vx_fhXh2X4ofKkB7Ajssfwu1BffP-CH6P5m5SVgCbr5DBhysscqToEbsVWI-ew9EmCwGLDDV2nZthTeH6HSt2dCQRJH815YQawyhY_MzwSuznGZlnlUqJJZQBxxP6VtoR1Lza2J-S-1s8hvGNDPkTaOVF7p4CHto0C3SkKO7UykUqtkqL8NDEHd9FWss2vG3GOLE1yzkX25gktNthhSTXFNKG_bXwrCL3-LfYXqOspJ7hi2Rjj214vW6muckXLjp3xVUpw4R7UsVtCLeUvO6O2b23W_KLHyXLd8TEPEI--3_nr-BO72xwmpz2hyfP4a5gxA3fmcV70FrOr9wLCpmW5mVtpwjfbnpq_AW56TEL
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaWRVpxQTxFYYFBWi5IUVs_4uSAEKKULcuueqBSb8Gv8FCblLYr1N_AP-LXMZNHu5UQtz3biRPPw2P7m28YO_GxNCb1Kspx8Y7Q4fWiRIY8cjokxH6OUTklOJ9fxKcT-XGqpgfsT5sLQ7DK1idWjtqXjs7Iu1wlGMxw1NBu3sAixoPhm8XPiCpI0U1rW06jVpGzsPmF27fV69EAZf2S8-H7z-9Oo6bCQOSk4uvIi8B1bK23LndKeiVNqp3wPidcG_HKWCpFoY1w1rpYhZj3rLQuFU4Jy73A995gN7VQfbIxPdXb8x20Xonhfp0SKETa6_5wc9T_FP8_2V8Ed5HtPi7zykI3vMNuNxEqvK1V6i47CMU9dnTe3MHfZ7_HyzCraoEtN0AwxA2UBWAcCYMatofPwXiXjwBlDgYGISygIXP9CjVPOmAXQM81p9QaS3hY-EBASxgVOSpqnVQJFagBJjP8VtwbNAzbMJqjI1w9YJNrmfCH7LAoi_CIQd_5PDaJxAjUyJDI1EnDdd-mPRUSY0SHvWrnOHMN3zmV3ZhluO8hgWRXBNJhJ9vOi5rm49_djlthZY2tr7KdZnbYi20zWildvZgilJdVH6LeEzLtML0n5O1wxPO931J8_1bxfSdE0cPF4_8P_pwdoUFkn0YXZ0_YLU7QG7o8S4_Z4Xp5GZ5i7LS2zyolBfbluq3iLzgXM9s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preliminary+Study+on+the+Diagnostic+Performance+of+a+Deep+Learning+System+for+Submandibular+Gland+Inflammation+Using+Ultrasonography+Images&rft.jtitle=Journal+of+clinical+medicine&rft.au=Kise%2C+Yoshitaka&rft.au=Kuwada%2C+Chiaki&rft.au=Ariji%2C+Yoshiko&rft.au=Naitoh%2C+Munetaka&rft.date=2021-09-29&rft.issn=2077-0383&rft.eissn=2077-0383&rft.volume=10&rft.issue=19&rft_id=info:doi/10.3390%2Fjcm10194508&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2077-0383&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2077-0383&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2077-0383&client=summon