Preliminary Study on the Diagnostic Performance of a Deep Learning System for Submandibular Gland Inflammation Using Ultrasonography Images

This study was performed to evaluate the diagnostic performance of deep learning systems using ultrasonography (USG) images of the submandibular glands (SMGs) in three different conditions: obstructive sialoadenitis, Sjögren’s syndrome (SjS), and normal glands. Fifty USG images with a confirmed diag...

Full description

Saved in:
Bibliographic Details
Published inJournal of clinical medicine Vol. 10; no. 19; p. 4508
Main Authors Kise, Yoshitaka, Kuwada, Chiaki, Ariji, Yoshiko, Naitoh, Munetaka, Ariji, Eiichiro
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 29.09.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This study was performed to evaluate the diagnostic performance of deep learning systems using ultrasonography (USG) images of the submandibular glands (SMGs) in three different conditions: obstructive sialoadenitis, Sjögren’s syndrome (SjS), and normal glands. Fifty USG images with a confirmed diagnosis of obstructive sialoadenitis, 50 USG images with a confirmed diagnosis of SjS, and 50 USG images with no SMG abnormalities were included in the study. The training group comprised 40 obstructive sialoadenitis images, 40 SjS images, and 40 control images, and the test group comprised 10 obstructive sialoadenitis images, 10 SjS images, and 10 control images for deep learning analysis. The performance of the deep learning system was calculated and compared between two experienced radiologists. The sensitivity of the deep learning system in the obstructive sialoadenitis group, SjS group, and control group was 55.0%, 83.0%, and 73.0%, respectively, and the total accuracy was 70.3%. The sensitivity of the two radiologists was 64.0%, 72.0%, and 86.0%, respectively, and the total accuracy was 74.0%. This study revealed that the deep learning system was more sensitive than experienced radiologists in diagnosing SjS in USG images of two case groups and a group of healthy subjects in inflammation of SMGs.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2077-0383
2077-0383
DOI:10.3390/jcm10194508