Sequential Projection Pursuit with Kernel Matrix Update and Symbolic Model Selection

This paper proposes a novel way for generating reliable low-dimensional features with improved class separability in a kernel-induced feature space. The feature projections rely on a very efficient sequential projection pursuit method, adapted to support nonlinear projections using a new kernel matr...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 44; no. 12; pp. 2458 - 2469
Main Authors Rodriguez-Martinez, E., Mu, T., Goulermas, J. Y.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.12.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper proposes a novel way for generating reliable low-dimensional features with improved class separability in a kernel-induced feature space. The feature projections rely on a very efficient sequential projection pursuit method, adapted to support nonlinear projections using a new kernel matrix update scheme. This enables the gradual removal of structure from the space of residual dimensions to allow the recovery of multiple projections. An adaptive kernel function is employed to unfold different types of data characteristics. We follow a holistic model selection procedure that, together with the optimal projections, dimensionality, and kernel parameters, additionally optimizes symbolically the projection index that controls the actual measurement of the data interestingness without user interaction. We tackle the underlying complex bi-level optimization model as a mixture of evolutionary and gradient search. The effectiveness of the proposed algorithm over existing approaches is demonstrated with benchmark evaluations and comparisons.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2168-2267
2168-2275
DOI:10.1109/TCYB.2014.2308908