Fabrication and measured performance of a first-generation microthermoelectric cooler

The measured performance of a column-type microthermoelectric cooler, fabricated using vapor-deposited thermoelectric films and patterned using photolithography processes, is reported. The columns, made of p-type Sb/sub 2/Te/sub 3/ and n-type Bi/sub 2/Te/sub 3/ with an average thickness of 4.5 /spl...

Full description

Saved in:
Bibliographic Details
Published inJournal of microelectromechanical systems Vol. 14; no. 5; pp. 1110 - 1117
Main Authors da Silva, L.W., Kaviany, M.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.10.2005
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The measured performance of a column-type microthermoelectric cooler, fabricated using vapor-deposited thermoelectric films and patterned using photolithography processes, is reported. The columns, made of p-type Sb/sub 2/Te/sub 3/ and n-type Bi/sub 2/Te/sub 3/ with an average thickness of 4.5 /spl mu/m, are connected using Cr/Au/Ti/Pt layers at the hot junctions, and Cr/Au layers at the cold junctions. The measured Seebeck coefficient and electrical resistivity of the thermoelectric films, which were deposited with a substrate temperature of 130/spl deg/C, are -74 /spl mu/V/K and 3.6/spl times/10/sup -5/ /spl Omega/-m (n-type, power factor of 0.15 mW/K/sup 2/-m), and 97 /spl mu/V/K and 3.1/spl times/10/sup -5/ /spl Omega/-m (p-type, power factor of 0.30 mW/K/sup 2/-m). The cooling performance of devices with 60 thermoelectric pairs and a column width of 40 /spl mu/m is evaluated under a minimal cooling load (thermobuoyant surface convection and surface radiation). The average cooling achieved is about 1 K. Fabrication challenges include the reduction of the column width, implementation of higher substrate temperatures for optimum thermoelectric properties, and improvements of the top connector patterning and deposition.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1057-7157
1941-0158
DOI:10.1109/JMEMS.2005.851846