Positron-induced emission of electron–positron pairs from solid surfaces

The collision of a low-energy positron, which impinges on a crystalline surface, with a valence electron may result in the emission of a spatially separated time-correlated electron-positron pair. We present a method for calculating the cross section for this positron surface reaction channel, which...

Full description

Saved in:
Bibliographic Details
Published inJournal of physics. Condensed matter Vol. 21; no. 35; pp. 355002 - 355002 (12)
Main Authors Giebels, F, Gollisch, H, Feder, R
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 02.09.2009
Institute of Physics
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The collision of a low-energy positron, which impinges on a crystalline surface, with a valence electron may result in the emission of a spatially separated time-correlated electron-positron pair. We present a method for calculating the cross section for this positron surface reaction channel, which we briefly refer to as (p, ep) in analogy to electron-induced pair emission (e, 2e). The two-particle final state is represented by a product of an electron and a positron diffraction state coupled by a 'correlation factor', which accounts for the screened Coulomb interaction. The electron-solid and positron-solid quasi-particle potentials are based on first-principles calculations within density functional theory. Numerical (p, ep) results are presented for Cu(111) and compared to their (e, 2e) counterparts. Energy distributions for constant emission angles reflect, to a large extent, the valence electron density of states. In equal-energy (p, ep) angular distributions, the Coulomb interaction produces a central accumulation zone-in contrast to a depletion zone for (e, 2e)-the relative weight and the extension of which are subject to 'matrix element effects'. At larger angles sharp features arise from single-particle surface resonances.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0953-8984
1361-648X
DOI:10.1088/0953-8984/21/35/355002