Determining the total energy budget of the tick Ixodes ricinus

Precise and accessible techniques for measuring metabolic responses to environmental stress are essential to allow the likely impacts of climate and climate change on tick distribution, abundance and phenology to be predicted. A more detailed understanding of the metabolic profile of ticks may also...

Full description

Saved in:
Bibliographic Details
Published inExperimental & applied acarology Vol. 80; no. 4; pp. 531 - 541
Main Authors Alasmari, Saeed, Wall, Richard
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.04.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Precise and accessible techniques for measuring metabolic responses to environmental stress are essential to allow the likely impacts of climate and climate change on tick distribution, abundance and phenology to be predicted. A more detailed understanding of the metabolic profile of ticks may also help the complex responses to pathogen infection and effects on transmission to be evaluated. Here, a series of biochemical protocols employing spectrophotometric methods are used to determine the entire energy budget of ticks. Protein, carbohydrate, total lipid, neutral lipid and glycogen were measured in individual Ixodes ricinus nymphs and adults. Two key trends were identified: in adults, protein was relatively more abundant than in nymphs, whereas in nymphs, glycogen and carbohydrate were more abundant than in adults, with glycogen alone composing 39% of the mass of metabolites in nymphs compared to 15 and 10% in females and males, respectively. The methods used were able to successfully separate neutral lipids from the polar phospholipids and the importance of distinguishing stored from structural lipid in estimates of lipid reserves is emphasised. The results demonstrate that the spectrophotometric approaches deliver relatively rapid and reliable estimates of the total energetic budget and can be used to quantify the metabolic profiles of individual ticks, demonstrating their suitability for use in ecological and epidemiological studies.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0168-8162
1572-9702
1572-9702
DOI:10.1007/s10493-020-00479-1