Robust Silica-Bacterial Cellulose Composite Aerogel Fibers for Thermal Insulation Textile

Aerogels are nanoporous materials with excellent properties, especially super thermal insulation. However, owing to their serious high brittleness, the macroscopic forms of aerogels are not sufficiently rich for the application in some fields, such as thermal insulation clothing fabric. Recently, fr...

Full description

Saved in:
Bibliographic Details
Published inGels Vol. 7; no. 3; p. 145
Main Authors Sai, Huazheng, Wang, Meijuan, Miao, Changqing, Song, Qiqi, Wang, Yutong, Fu, Rui, Wang, Yaxiong, Ma, Litong, Hao, Yan
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 17.09.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Aerogels are nanoporous materials with excellent properties, especially super thermal insulation. However, owing to their serious high brittleness, the macroscopic forms of aerogels are not sufficiently rich for the application in some fields, such as thermal insulation clothing fabric. Recently, freeze spinning and wet spinning have been attempted for the synthesis of aerogel fibers. In this study, robust fibrous silica-bacterial cellulose (BC) composite aerogels with high performance were synthesized in a novel way. Silica sol was diffused into a fiber-like matrix, which was obtained by cutting the BC hydrogel and followed by secondary shaping to form a composite wet gel fiber with a nanoscale interpenetrating network structure. The tensile strength of the resulting aerogel fibers reached up to 5.4 MPa because the quantity of BC nanofibers in the unit volume of the matrix was improved significantly by the secondary shaping process. In addition, the composite aerogel fibers had a high specific area (up to 606.9 m2/g), low density (less than 0.164 g/cm3), and outstanding hydrophobicity. Most notably, they exhibited excellent thermal insulation performance in high-temperature (210 °C) or low-temperature (−72 °C) environments. Moreover, the thermal stability of CAFs (decomposition temperature was about 330 °C) was higher than that of natural polymer fiber. A novel method was proposed herein to prepare aerogel fibers with excellent performance to meet the requirements of wearable applications.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2310-2861
2310-2861
DOI:10.3390/gels7030145