The insulin-mimetic effect of Morin: A promising molecule in diabetes treatment

Type-2 diabetes is a worldwidely diffuse disease characterized by insulin resistance that arises from alterations of receptor and/or post-receptor events of insulin signalling. Studies performed with PTP1B-deficent mice demonstrated that PTP1B is the main negative regulator of insulin signalling. In...

Full description

Saved in:
Bibliographic Details
Published inBiochimica et biophysica acta Vol. 1830; no. 4; pp. 3102 - 3111
Main Authors Paoli, Paolo, Cirri, Paolo, Caselli, Anna, Ranaldi, Francesco, Bruschi, Giulia, Santi, Alice, Camici, Guido
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.04.2013
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Type-2 diabetes is a worldwidely diffuse disease characterized by insulin resistance that arises from alterations of receptor and/or post-receptor events of insulin signalling. Studies performed with PTP1B-deficent mice demonstrated that PTP1B is the main negative regulator of insulin signalling. Inhibition or down regulation of this enzyme causes enhanced insulin sensitivity. Hence this enzyme represents the most attractive target for development of innovative anti-diabetic drugs. Selection of new PTP1B inhibitors among an in house library of polyphenolic compounds was carried out screening their activity. The inhibition mechanism of Morin was determined by kinetic analyses. The cellular action of Morin was assayed on HepG2 cells. Analyses of the insulin signalling pathways was carried out by Western blot methods, glycogen synthesis was estimated by measuring the incorporation of [3H]-glucose, gluconeogenesis rate was assayed by measuring the glucose release in the cell medium. Cell growth was estimated by cell count. Docking analysis was conducted with SwissDock program. We demonstrated that Morin: i) is a non-competitive inhibitor of PTP1B displaying a Ki in the μM range; ii) increases the phosphorylation of the insulin receptor and Akt; iii) inhibits gluconeogenesis and enhances glycogen synthesis. Morin does not enhance cell growth. We have identified Morin as a new small molecular non-competitive inhibitor of PTP1B, which behaves as an activator and sensitizer of the insulin receptor stimulating the metabolic pathways only. Our study suggests that Morin is a useful lead for development of new low Mr compounds potentially active as antidiabetic drugs. ► Morin acts as a competitive inhibitor of PTP1B, displaying Ki in the low micromolar range. ► Morin activates the insulin receptor in HepG2 cells. ► Morin enhances glycogen synthesis and inhibits gluconeogenesis. ► Morin increases insulin sensitivity. ► Morin possesses potential antidiabetic activity.
Bibliography:http://dx.doi.org/10.1016/j.bbagen.2013.01.017
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0304-4165
0006-3002
1872-8006
DOI:10.1016/j.bbagen.2013.01.017