An Evaluation of Experimental Calcium Ion-Leachable Nanocomposite Glass Ionomer Cements
Glass ionomer cements (GICs) are among the main restorative dental materials used broadly in daily clinical practice. The incorporation of clay nanoparticles as reinforcing agents is one potential approach to improving GIC properties. This study aims to investigate whether the incorporation of calci...
Saved in:
Published in | Nanomaterials (Basel, Switzerland) Vol. 13; no. 19; p. 2690 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
30.09.2023
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Glass ionomer cements (GICs) are among the main restorative dental materials used broadly in daily clinical practice. The incorporation of clay nanoparticles as reinforcing agents is one potential approach to improving GIC properties. This study aims to investigate whether the incorporation of calcium-modified clay (Ca-clay) nanoparticles in conventional GICs alters their structural characteristics, along with their physicochemical and mechanical properties. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses were performed to assess the surface characterization of GIC nanocomposites, whereas a setting reaction was carried out via an attenuated total reflection Fourier transform infrared spectrometer (ATR-FTIR). A universal testing machine was used for compression tests, while calcium ion release was quantified using inductively coupled plasma optical emission spectrometry (ICP-OES). GIC composite groups reinforced with Ca-clay were found to release a fine amount of calcium ions (5.06–9.91 ppm), with the setting reaction being unaffected for low Ca-clay loadings. The median compressive strength of 3 wt% in the Ca-clay group (68.97 MPa) was nearly doubled compared to that of the control group (33.65 MPa). The incorporation of Ca-clay nanoparticles in GICs offers a promising alternative among dental restorative materials regarding their chemical and mechanical properties. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2079-4991 2079-4991 |
DOI: | 10.3390/nano13192690 |