Climate change hotspots over South America: from CMIP3 to CMIP5 multi-model datasets

This study identifies possible hotspots of climate change in South America through an examination of the spatial pattern of the Regional Climate Change Index (RCCI) over the region by the end of the twenty-first century. The RCCI is a qualitative index that can synthesize a large number of climate m...

Full description

Saved in:
Bibliographic Details
Published inTheoretical and applied climatology Vol. 117; no. 3-4; pp. 579 - 587
Main Authors Torres, Roger Rodrigues, Marengo, Jose Antonio
Format Journal Article
LanguageEnglish
Published Vienna Springer Vienna 01.08.2014
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This study identifies possible hotspots of climate change in South America through an examination of the spatial pattern of the Regional Climate Change Index (RCCI) over the region by the end of the twenty-first century. The RCCI is a qualitative index that can synthesize a large number of climate model projections, and it is suitable for identifying those regions where climate change could be more pronounced in a warmer climate. The reliability and uncertainties of the results are evaluated by using numerous state-of-the-art general circulation models (GCMs) and forcing scenarios from the Coupled Model Intercomparison Project phases 3 and 5. The results show that southern Amazonia and the central-western region and western portion of Minas Gerais state in Brazil are persistent climate change hotspots through different forcing scenarios and GCM datasets. In general, as the scenarios vary from low- to high-level forcing, the area of high values of RCCI increase and the magnitude intensify from central-western and southeast Brazil to northwest South America. In general, the climatic hotspots identified in this study are characterized by an increase of mean surface air temperature, mainly in the austral winter; by an increase of interannual temperature variability, predominantly in the austral summer; and by a change in the mean and interannual variability of precipitation during the austral winter.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0177-798X
1434-4483
DOI:10.1007/s00704-013-1030-x