Continuous supercritical solvothermal preparation of nanostructured ceria-zirconia as supports for dry methane reforming catalysts

[Display omitted] •Nanostructured CexZr1-xO2 materials prepared by the continuous supercritical solvothermal sol-gel like synthesis.•Nanostructured CexZr1-xO2 as supports of Ni impregnated dry reforming of methane (DRM) catalysts.•High TOF and small selectivity of coke formation in DRM. The nanostru...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of supercritical fluids Vol. 162; p. 104855
Main Authors Auxéméry, Aimery, Frias, Brigitte Botello, Smal, Ekaterina, Dziadek, Katarzyna, Philippot, Gilles, Legutko, Piotr, Simonov, Michail, Thomas, Sébastien, Adamski, Andrzej, Sadykov, Vladislav, Parkhomenko, Ksenia, Roger, Anne-Cécile, Aymonier, Cyril
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2020
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:[Display omitted] •Nanostructured CexZr1-xO2 materials prepared by the continuous supercritical solvothermal sol-gel like synthesis.•Nanostructured CexZr1-xO2 as supports of Ni impregnated dry reforming of methane (DRM) catalysts.•High TOF and small selectivity of coke formation in DRM. The nanostructured CexZr1-xO2 systems (0 ≤ x ≤ 0.75) were prepared combining alkoxide and nitrate precursors in an ethanol/water mixture by the continuous supercritical solvothermal sol-gel like synthesis. They were subsequently used as supports for nickel impregnation (10 wt.%) to obtain catalysts for dry reforming of methane (DRM) reaction. A reference CexZr1-xO2 (x = 0.50) system prepared via conventional coprecipitation method was used as a support for nickel impregnation in the comparative study of the nanostructured materials’ catalytic potential. The morphological and structural properties of the prepared nanostructured supports and Ni-containing catalysts were investigated by numerous techniques as XRD, Raman spectroscopy, SEM, TEM, EDS, chemisorption and others. The conditions of DRM reaction were chosen in order to compare the activity, the stability as well as the selectivity of coke formation in the presence of the prepared catalytic materials. It was found that the industrial catalyst leads to heavy coking in the chosen conditions with a rapid loss of activity. While the nanostructured CexZr1-xO2 (0 ≤ x ≤ 0.75) materials are found to be promising supports for Ni dispersion and coke control in DRM. In this study the nanostructured Ce0.50Zr0.50O2 material impregnated with nickel shown the highest TOF and the smallest selectivity of coke formation in DRM among other nanostructured materials. The continuous supercritical solvothermal method allows to prepare nanostructured mixed oxide materials that could be promising supports for different active metals dispersion and for coke control in the reactions where coking may be abundant.
ISSN:0896-8446
1872-8162
DOI:10.1016/j.supflu.2020.104855