A Reparameterisation Based Approach to Geodesic Constrained Solvers for Curve Matching

We present a numerical algorithm for a new matching approach for parameterisation independent diffeomorphic registration of curves in the plane, targeted at robust registration between curves that require large deformations. This condition is particularly useful for the geodesic constrained approach...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of computer vision Vol. 99; no. 1; pp. 103 - 121
Main Authors Cotter, Colin J., Clark, Allan, Peiró, Joaquim
Format Journal Article
LanguageEnglish
Published Boston Springer US 01.08.2012
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We present a numerical algorithm for a new matching approach for parameterisation independent diffeomorphic registration of curves in the plane, targeted at robust registration between curves that require large deformations. This condition is particularly useful for the geodesic constrained approach in which the matching functional is minimised subject to the constraint that the evolving diffeomorphism satisfies the Hamiltonian equations of motion; this means that each iteration of the nonlinear optimisation algorithm produces a geodesic (up to numerical discretisation). We ensure that the computed solutions correspond to geodesics in the shape space by enforcing the horizontality condition (conjugate momentum is normal to the curve). Explicitly introducing and solving for a reparameterisation variable allows the use of a point-to-point matching condition. The equations are discretised using the variational particle-mesh method. We provide comprehensive numerical convergence tests and benchmark the algorithm in the context of large deformations, to show that it is a viable, efficient and accurate method for obtaining geodesics between curves.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0920-5691
1573-1405
DOI:10.1007/s11263-012-0520-0