Computation and application of tissue-specific gene set weights

Abstract Motivation Gene set testing, or pathway analysis, has become a critical tool for the analysis of high-dimensional genomic data. Although the function and activity of many genes and higher-level processes is tissue-specific, gene set testing is typically performed in a tissue agnostic fashio...

Full description

Saved in:
Bibliographic Details
Published inBioinformatics Vol. 34; no. 17; pp. 2957 - 2964
Main Author Frost, H Robert
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.09.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract Motivation Gene set testing, or pathway analysis, has become a critical tool for the analysis of high-dimensional genomic data. Although the function and activity of many genes and higher-level processes is tissue-specific, gene set testing is typically performed in a tissue agnostic fashion, which impacts statistical power and the interpretation and replication of results. Results To address this challenge, we have developed a bioinformatics approach to compute tissue-specific weights for individual gene sets using information on tissue-specific gene activity from the Human Protein Atlas (HPA). We used this approach to create a public repository of tissue-specific gene set weights for 37 different human tissue types from the HPA and all collections in the Molecular Signatures Database. To demonstrate the validity and utility of these weights, we explored three different applications: the functional characterization of human tissues, multi-tissue analysis for systemic diseases and tissue-specific gene set testing. Availability and implementation All data used in the reported analyses is publicly available. An R implementation of the method and tissue-specific weights for MSigDB gene set collections can be downloaded at http://www.dartmouth.edu/∼hrfrost/TissueSpecificGeneSets.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1367-4803
1460-2059
1367-4811
DOI:10.1093/bioinformatics/bty217