A comparison of ground-based methods for obtaining large-scale, high-resolution data on the spring leaf phenology of temperate tree species
Phenological variation in spring leafing between and within species can determine plant responses to warmer winter and spring temperatures in the short term. Methods are needed for monitoring canopy development that can be replicated on a large-scale, while retaining fine-scale resolution at the lev...
Saved in:
Published in | International journal of biometeorology Vol. 64; no. 3; pp. 521 - 531 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.03.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Phenological variation in spring leafing between and within species can determine plant responses to warmer winter and spring temperatures in the short term. Methods are needed for monitoring canopy development that can be replicated on a large-scale, while retaining fine-scale resolution at the level of individual trees. Citizen science has the potential to provide this, but a range of approaches exist in terms of the phenophase recorded (e.g. budburst or leaf expansion), how the phenophase is characterised (first events or intensity monitoring) and the portion of tree crown assessed and observation frequency. A comparison of spring budburst and leaf expansion of four tree species (
Fraxinus excelsior, Fagus sylvatica, Quercus robur
and
Acer pseudoplatanus
) was monitored in one woodland using (1) counts of expanded leaves on three crown sections, (2) percentage estimates of expanded leaves across the whole crown and (3) a greenness index from photography. Logistic growth models were applied to make comparisons. First-event dates were found to be misleading due to high variation in leaf development rates within and between species. Percentage estimates and counts produced similar estimates of leaf expansion timing and rate. The greenness index produced similar estimates of timing, but not rate, and was compromised by practicalities of photographing individual crowns in closed-canopy woodland. Citizen scientists could collect data across the period of spring leafing, with visual counts and/or estimates made every 3–4 days, subject to tests of reliability in pilot citizen science studies. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 0020-7128 1432-1254 1432-1254 |
DOI: | 10.1007/s00484-019-01839-2 |