Crosstalk of plant growth regulators protects photosynthetic performance from arsenic damage by modulating defense systems in rice
Salicylic acid (SA) is a well-known plant growth regulator, which participates in many physiological processes of plants under normal and stressful conditions. In this study, we investigated the impact of SA supplementation on the components of ascorbate-glutathione cycle and glyoxalase system, phot...
Saved in:
Published in | Ecotoxicology and environmental safety Vol. 222; p. 112535 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.10.2021
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Salicylic acid (SA) is a well-known plant growth regulator, which participates in many physiological processes of plants under normal and stressful conditions. In this study, we investigated the impact of SA supplementation on the components of ascorbate-glutathione cycle and glyoxalase system, photosynthesis and growth of rice (Oryza sativa) plants subjected to arsenic (As) stress. Plants grown with As exhibited enhanced As uptake, increased oxidative stress, and photosynthesis and growth inhibition. Application of SA promoted photosynthesis and growth in plants with or without As stress by improving plant defense systems and reducing oxidative stress through interaction with ethylene and nitric oxide (NO). SA acted as an ethylene antagonist, reducing stress ethylene formation under As stress, while NO formation was induced. This resulted in coordinated control over the antioxidant defense systems and enhanced As tolerance, protecting photosynthesis and growth from As-induced damage. The study showed that positive responses of SA in promoting photosynthesis and growth under As stress were the result of its interplay with ethylene and NO, enhanced capacity of defense systems to reduce oxidative stress. The crosstalk of SA with ethylene and NO will be useful in augmenting the performance of rice plants under As stress.
•Arsenic stress increases oxidative stress and inhibits photosynthesis.•Salicylic acid strengthens defense mechanisms under As stress.•Salicylic acid improves photosynthesis and growth under As stress.•Salicylic acid interacts with ethylene and nitric oxide for As tolerance. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0147-6513 1090-2414 |
DOI: | 10.1016/j.ecoenv.2021.112535 |