Hope speech detection in YouTube comments
Recent work on language technology has tried to recognize abusive language such as those containing hate speech and cyberbullying and enhance offensive language identification to moderate social media platforms. Most of these systems depend on machine learning models using a tagged dataset. Such mod...
Saved in:
Published in | Social network analysis and mining Vol. 12; no. 1; p. 75 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Vienna
Springer Vienna
01.12.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Recent work on language technology has tried to recognize abusive language such as those containing hate speech and cyberbullying and enhance offensive language identification to moderate social media platforms. Most of these systems depend on machine learning models using a tagged dataset. Such models have been successful in detecting and eradicating negativity. However, an additional study has lately been conducted on the enhancement of free expression through social media. Instead of eliminating ostensibly unpleasant words, we created a multilingual dataset to recognize and encourage positivity in the comments, and we propose a novel custom deep network architecture, which uses a concatenation of embedding from T5-Sentence. We have experimented with multiple machine learning models, including SVM, logistic regression, K-nearest neighbour, decision tree, logistic neighbours, and we propose new CNN based model. Our proposed model outperformed all others with a macro F1-score of 0.75 for English, 0.62 for Tamil, and 0.67 for Malayalam. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1869-5450 1869-5469 |
DOI: | 10.1007/s13278-022-00901-z |