RNA interference mediated inhibition of Chikungunya virus replication in mammalian cells

Chikungunya has emerged as one of the most important arboviral infection of public health significance. Recently several parts of Indian Ocean islands and India witnessed explosive, unprecedented epidemic. So far, there is no effective antiviral or licensed vaccine available against Chikungunya infe...

Full description

Saved in:
Bibliographic Details
Published inBiochemical and biophysical research communications Vol. 376; no. 4; pp. 718 - 722
Main Authors Dash, Paban Kumar, Tiwari, Mugdha, Santhosh, S.R., Parida, Manmohan, Lakshmana Rao, P.V.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 28.11.2008
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Chikungunya has emerged as one of the most important arboviral infection of public health significance. Recently several parts of Indian Ocean islands and India witnessed explosive, unprecedented epidemic. So far, there is no effective antiviral or licensed vaccine available against Chikungunya infection. RNA interference mediated inhibition of viral replication has emerged as a promising antiviral strategy. In this study, we examined the effectiveness of small interfering RNAs (siRNAs) against the inhibition of Chikungunya virus replication in Vero cells. Two siRNAs against the conserved regions of nsP3 and E1 genes of Chikungunya virus were designed. The siRNA activity was assessed by detecting both the infectious virus and its genome. The results indicated a reduction of virus titer up to 99.6% in siRNA transfected cells compared to control. The viral inhibition was most significant at 24 h (99%), followed by 48 h (65%) post infection. These results were also supported by the quantitative RT-PCR assay revealing similar reduction in Chikungunya viral genomic RNA. The siRNAs used had no effect on the expression of house keeping gene indicating non-interference in cellular mechanism. The specific and marked reduction in viral replication against rapidly replicating Chikungunya virus achieved in this study offers a potential new therapeutic approach. This is the first report demonstrating the effectiveness of siRNA against in vitro replication of Chikungunya virus.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0006-291X
1090-2104
DOI:10.1016/j.bbrc.2008.09.040