Retained topical delivery of 5-aminolevulinic acid using cationic ultradeformable liposomes for photodynamic therapy
5-Aminolevulinic acid (5-ALA), inducing photodynamic protoporphyrin (PpIX), is a hydrophilic molecule, resulting in leashing the capacity to cross tissue barriers like stratum corneum (SC) of skin. Here, we aimed to develop 5-ALA loaded ultradeformable liposomes (UDL) with different surface charges,...
Saved in:
Published in | European journal of pharmaceutical sciences Vol. 44; no. 1; pp. 149 - 157 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Kindlington
Elsevier B.V
18.09.2011
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | 5-Aminolevulinic acid (5-ALA), inducing photodynamic protoporphyrin (PpIX), is a hydrophilic molecule, resulting in leashing the capacity to cross tissue barriers like stratum corneum (SC) of skin. Here, we aimed to develop 5-ALA loaded ultradeformable liposomes (UDL) with different surface charges, and to investigate their physicochemical characteristics and capability for the skin penetration and retention of 5-ALA for topical photodynamic therapy (PDT). The effects of surface charges of UDL on
in vitro permeation of 5-ALA and
in vivo accumulation of 5-ALA−induced PpIX in viable skin were determined and then compared with conventional neutral liposomes (nLiposome). All UDL showed smaller particle size and better deformability than nLiposome. However, entrapment efficiency of 5-ALA was similar to each vesicle. Among vesicles, the cationic UDL (cUDL) demonstrated higher stability and permeability, and could deliver 5-ALA into deep skin tissue by topical application. Moreover, the 5-ALA loaded in cUDL was long retained, and induced more amount of PpIX in viable skin than those in other UDL and nLiposome. Considering that the conversion of 5-ALA into PpIX occurs preferentially in epidermis, these results suggested that topical delivery of 5-ALA loaded in cUDL could be an interesting proposal to optimize PDT related to 5-ALA. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0928-0987 1879-0720 |
DOI: | 10.1016/j.ejps.2011.07.003 |