Analysis of the effect of cadmium stress on root exudates of Sedum plumbizincicola based on metabolomics
Root exudates are the most direct manifestation of the response of plants changes in the external environment. Therefore, based on non-targeted gas chromatography-time-of-flight mass spectrometry and metabolomics, the response of Sedum plumbizincicola root exudates to Cd stress was used to reveal th...
Saved in:
Published in | Ecotoxicology and environmental safety Vol. 205; p. 111152 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.12.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Root exudates are the most direct manifestation of the response of plants changes in the external environment. Therefore, based on non-targeted gas chromatography-time-of-flight mass spectrometry and metabolomics, the response of Sedum plumbizincicola root exudates to Cd stress was used to reveal the possible mechanism of resistance to or accumulation of Cd. The results showed that Cd significantly changed the composition and contents of S. plumbizincicola root exudates. A total of 155 metabolites were identified in S. plumbizincicola root exudates, among which 33 showed significant differences under Cd stress, including organic acids, amino acids, lipids, and polyols. Cd stress suppressed organic acid metabolism and lipid metabolism in S. plumbizincicola and significantly affected amino acid metabolism. There were 16 metabolic pathways related to Cd stress, among which arginine and proline metabolism, valine, leucine, and isoleucine biosynthesis, glycine, serine, and threonine metabolism, glutathione metabolism, and purine metabolism were the key pathways with the highest correlation, and were closely related to the stress resistance of S. plumbizincicola.
[Display omitted]
•The main S. plumbizincicola root exudates were organic acids, amino acids, carbohydrates, fatty acids, amines, lipids.•Cd stress significantly changed the contents of organic acids, amino acids, and lipids of root exudates.•Cd stress suppressed organic acid metabolism and lipid metabolism.•Amino acid metabolism was the key metabolic pathway of S. plumbizincicola under Cd stress. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0147-6513 1090-2414 1090-2414 |
DOI: | 10.1016/j.ecoenv.2020.111152 |