A Swish RNN based customer churn prediction for the telecom industry with a novel feature selection strategy

Owing to saturated markets, fierce competition, dynamic criteria, along with introduction of new attractive offers, the considerable issue of customer churn was faced by the telecommunication industry. Thus, an efficient Churn Prediction (CP) model is required for monitoring customer churn. Therefor...

Full description

Saved in:
Bibliographic Details
Published inConnection science Vol. 34; no. 1; pp. 1855 - 1876
Main Authors Sudharsan, R., Ganesh, E. N.
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 31.12.2022
Taylor & Francis Ltd
Taylor & Francis Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Owing to saturated markets, fierce competition, dynamic criteria, along with introduction of new attractive offers, the considerable issue of customer churn was faced by the telecommunication industry. Thus, an efficient Churn Prediction (CP) model is required for monitoring customer churn. Therefore, this work proposes a novel framework to predict customer churn through a deep learning model namely Swish Recurrent Neural Network (S-RNN). Finally, SRNN is adapted to classify the Churn Customer (CC) and a normal customer. If the result is a churn customer, network utilisation history is analysed for retention process. Whereas, the number of churn customers based on the area network usage is not recognised in this frameworkOwing to saturated markets, fierce competition, dynamic criteria, along with introduction of new attractive offers, the considerable issue of customer churn was faced by the telecommunication industry. Thus, an efficient Churn Prediction (CP) model is required for monitoring customer churn. Therefore, this work proposes a novel framework to predict customer churn through a deep learning model namely Swish Recurrent Neural Network (S-RNN). Finally, S-RNN is adapted to classify the Churn Customer (CC) and a normal customer. If the result is a churn customer, network utilisation history is analysed for retention process.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0954-0091
1360-0494
DOI:10.1080/09540091.2022.2083584