A subject-specific FEM to predict deep tissue mechanical stresses when supine: Development of efficient contact interfaces using Shared Topology
Prior studies have demonstrated Finite Element (FE) analysis is a useful tool when analysing the complex interplay of tissue and body loads which act through the human pelvis in a subject lying supine. The computational accuracy and efficiency of FE models that contain complex non-linear geometric i...
Saved in:
Published in | Journal of biomechanics Vol. 137; p. 111085 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
01.05.2022
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Prior studies have demonstrated Finite Element (FE) analysis is a useful tool when analysing the complex interplay of tissue and body loads which act through the human pelvis in a subject lying supine. The computational accuracy and efficiency of FE models that contain complex non-linear geometric interfaces between different anatomical and tissue regions can be compromised by superfluous node interactions and contact penetrations. This study proposes a method for the development of efficient contact definitions using shared topology. The Shared Topology Finite Element Model (FEM) resulted in a 37% reduction in solution time compared to an equivalent FEM defined with Bonded contact. At all tissue interfaces, contact penetration occurred in the Bonded FEM, with subsequent under-prediction of peak compressive strains and stresses by 1–7% compared to the Shared Topology FEM. Simulating supine lying of a 19-year-old male, the Shared Topology FEM predicted peak compressive stress in the muscle interfacing the sacrum of 29.4 kPa, and peak compressive strain of 50%. The proposed methodology can be applied for any medical imaging derived FEM where there are multiple congruent 3D geometries with negligible sliding across interfaces. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Case Study-2 ObjectType-Feature-4 content type line 23 ObjectType-Report-1 ObjectType-Article-3 |
ISSN: | 0021-9290 1873-2380 1873-2380 |
DOI: | 10.1016/j.jbiomech.2022.111085 |